

Cotton Pest Management Guide

A production of

The Australian Cotton Industry Development & Delivery Team

2011-12

The backbone of heliothis control.

If you want robust and reliable heliothis control, DuPont™ Altacor® insecticide should be the backbone of your insecticide programme. It consistently performs from head ditch to tail drain, from season to season, under a wide range of conditions.

In fact, if you're looking for a spray programme that isn't spineless and will always support your cotton crop, $Altacor^{\circ}$ is your starting point.

For more information on rotation plans call 1800 257 169.

ALWAYS REFER TO THE LABEL BEFORE USE

Altacor®. Heliothis control without compromise.

Copyright © 2011 DuPont. The DuPont Oval Logo, DuPont™, The miracles of science®, Rynaxypyr® and Altacor® are trademarks or registered trademarks of DuPont or its affiliates. Du Pont (Australia) Ltd. 7 Eden Park Drive, Macquarie Park NSW 2113. ACN 000 716 469. Hotline 1800 257 169. All rights reserved. DP1524/A.

With a combined 120 years of practical cotton growing experience, this team will be the most beneficial species you can have in your cotton crop.

COTTON GROWERS SERVICES

PTY. LTD.

The benefits of biotechnology are obvious, but how do we ensure its future?

Responsible stewardship of biotech traits is vital to ensuring your continued access to its innovative products. It adds value to your business by ensuring you receive maximum benefit from the technology, protecting your profitability and the local environment as well.

Monsanto, in consultation with industry, aims to equip growers with the tools they need to get the most from biotech traits. Our Regional Business Managers are located in key growing regions to give helpful advice on our products and effective product stewardship for sustainable long-term use.

By working together we hope to ensure a sustainable and productive industry for future generations.

For more information on Biotech Stewardship visit www.monsanto.com.au or call your Regional Business Manager.

Mick Fing – Belyando, Emerald, Dawson/Callide, McKenzie River, Darling Downs, St George and Dirranbandi 0417 305 717

Mark Dawson – Namoi, Walgett, Macintyre, Gwydir and Mungindi 0428 106 090 Luke Sampson – Bourke, Macquarie Lachlan and Murrumbidgee 0427 701 986 Tony May – Victoria 0428 679 418

® Roundup Ready Flex, Bollgard II and Roundup Ready are registered trademarks of Monsanto Technologies LLC, used under licence by Monsanto Australia Ltd.

Contents...

WHAT'S NEW			
From the editor	4		
Index of Tables	4		
INSECTS			
Key Insect and mite pests of Australian cotton	5 Spo	onsored by –	
Insect pest and damage thresholds		•	
Insecticides: Trade names and marketers4	IO Sp	oonsored by –	SUMITOMO CHEMICAL
Beneficial Insect attractants and additives4	18		
Integrated Pest Management4	19 Sp	onsored by –	syngenta
IRMS Strategy6	3 Sp	onsored by –	The miracles of science®
Bollgard II Resistance Management Plan 2011/12			
Unsprayed pigeon pea refuge agronomy	36		
WEEDS			
Integrated Weed Management	38		
IWM approach to problem weeds9	_		
Potential for herbicide resistance9	97		
Herbicide tolerant technology1	102		
Cotton Weed Control Guide1	107		
Herbicides: Trade names and marketers1	111		
Volunteer and ratoon cotton 1	118		
DISEASES			
Integrated disease management	120		
Common diseases of cotton1			
Cotton Pathology Survey 1	126		
Cotton Disease Control Guide	131		
Fungicides: Trade names and marketers 1	132		
PGRs & DEFOLIANTS			
Cotton growth regulators and defoliants1	133		
Plant growth regulators: Trade names and marketers 1			
Defoliants: Trade names and marketers 1	135		
BIOSECURITY			
Cotton Industry Biosecurity Plan1	137		
Exotic pests and diseases of greatest threat1			
SPRAY APPLICATION			
	142		
Best Practices for aerial and ground spray application			
Legal responsibilities in applying pesticides			
Cancellation of endosulfan registration			3
Suspension of 2,4-D High Volatile Esters (HVE)		-	la constant
Re-entry periods after spraying			JOHN DEERF
Withholding periods (WHP) after pesticide application			
MY BMP			
myBMP – A web based management system for the			
cotton industry1	159		

From the editor

The Cotton Industry Development and Delivery Team has pulled together with industry researchers to yet again deliver on this great crop protection publication. This guide covers industry best practice for insect, weed, disease and spray application for 2011–12.

Summary of changes

Make note of the cancellation of registration of endosulfan (see page 156). Remember October 11, 2012 is the key date.

Finding the information you need for IPM decisions is now easier. The impact of insecticides and miticides tables have been moved closer to the front (pages 7–9). The IPM section has also been completely reviewed and updated. The IRMS has also undergone substantial changes in layout.

Good farm hygiene, including control of insect and disease hosts, is a key component of good IPM. The weed section has been updated and now includes considerations and products registered for control of volunteer cotton.

Unfortunately there has been an increase in the number of species with confirmed herbicide resistance (see Table 27). See page 97 for more information on how to assess your risk of herbicide resistance.

The disease survey from 2010–11 has been included on page 126 and highlights a number of issues. There is a lot of industry concern about increasing Cotton Bunchy Top; check out the CBT section on page 124 for updates.

Good luck for the season ahead...

Regards, Susan Maas

DISCLAIMER

This document has been prepared by the authors for Cotton CRC in good faith on the basis of available information.

While the information contained in the document has been formulated with all due care, the users of the document must obtain their own advice and conduct their own investigations and assessments of any proposals they are considering, in the light of their own individual circumstances.

The document is made available on the understanding that the Cotton CRC, the authors and the publisher, their respective servants and agents accept no representation, statement or information whether expressed or implied in the document, and disclaim all liability for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information claimed in the document or by reason of any error, omission, defect or mis-statement (whether such error, omission or mis-statement is caused by or arises from negligence, lack of care or otherwise).

Whilst the information is considered true and correct as at 30 June 2011, changes in circumstances after the time of publication may impact on the accuracy of the information. The information may change without notice and the Cotton CRC, the authors and the publisher and their respective servants and agents are not in any way liable for the accuracy of any information contained in this document.

Recognising that some of the information is provided by third parties, the Cotton CRC, the authors and the publisher take no responsibility for the accuracy, currency, reliability and correctness of any information included in the document provided by third parties.

The product trade names in this publication are supplied on the understanding that no preference between equivalent products is intended and that the inclusion of a product does not imply endorsement by Cotton CRC over any other equivalent product from another manufacturer.

ISSN 1442-8462

Production by Greenmount Press, 2011

Liberty® and Liberty Link® are Registered Trademarks of Bayer.

Bollgard II®, Roundup Ready®, Roundup Ready Flex® and PLANTSHIELD® are registered trademarks of Monsanto Technology LLC used under licence by Monsanto Australia Ltd.

INDEV	OF TABLES	
Table	OF TABLES	Dogo
Table 1	Description Second activity plan for IRM	Page 6
Table 2	Seasonal activity plan for IPM. Impact of insecticides at planting or as seed treatments on key beneficial groups in cotton	7
Table 3	Impact of insecticides and miticides on predators, parasitoids and bees in cotton	8
Table 4	Control of Helicoverpa spp.	13
Table 5	Control of aphids	16
Table 6	Control of mirids	20
Table 7	Yield reduction caused by mites	24
Table 8	Control of mites	25
Table 9	Control of silverleaf whitefly	28
Table 10	Control of thrips	31
Table 11	Control of green vegetable bug	32
Table 12	Control of armyworm, cutworm and tipworm	36
Table 13	Control of wireworm	37
Table 14	Control of cotton leafhopper	37
Table 15	Control of rough bollworm	37
Table 16	Control of pink spotted bollworm	37
Table 17	Insect pest and damage thresholds	38-39
Table 18	Insecticide trade names and marketers – Registered chemicals as at May 15, 2011	40-47
Table 19	Insecticide seed treatment trade names and marketers – Registered chemicals as at July 1, 2011	47
Table 20	Food sprays and spray additives	48
Table 21	Food sprays and spray additives trade names and marketers	48
Table 22	Herbicides available for use in pigeon pea (registered or permit number Per1021)	87
Table 23	Herbicide plant backs from rotation crops to cotton	95
Table 24	Plant backs to cotton for herbicides used in seedbed preparation	96
Table 25	Herbicides with unknown plant back periods to cotton	96
Table 26 Table 27	Cotton herbicide plant backs to rotation crops Australian weeds with resistance to the Mode of	96
	Action (MoA) groups used in cotton	107
Table 28 Table 29	Control of weeds in dry channels Control of weeds around aquatic areas	107
Table 30	Weed control before planting	108
Table 31	Weed control at planting	109
Table 32	Weed control after planting and before crop emergence	109
Table 33	Weed control pre harvest	109
Table 34	Weed control after crop emergence (includes layby)	110
Table 35	Herbicide trade names and marketers – Registered chemicals as at June 7, 2011	111-117
Table 36	Herbicides that have registration for control of volunteer cotton	119
Table 37	Control of cotton diseases	131
Table 38	Fungicide trade names and marketers	132
Table 39	Plant growth regulators	133
Table 40	Plant growth regulators trade names and marketers	133
Table 41	Cotton defoliation products	134
Table 42	Defoliation products trade names and marketers	135-136
Table 43	Cotton insecticides with known residual toxicities to honey bees	153
Table 44	Common insecticides with label re-entry periods	157
Table 45	Withholding period after application for common chemicals	158

Key insects and mite pests of Australian cotton

Tracey Leven, CRDC Robert Mensah, DPI NSW Richard Sequeria, DEEDI Qld Lewis Wilson, CSIRO Martin Dillon, formerly CSIRO

This section provides specific management information for each of the key insect and mite pests of Australian cotton. For each pest, information is provided under the sub-headings of

- Damage symptoms
- Sampling
- Thresholds
- Key beneficial insects
- Selecting an insecticide/miticide
- · Survival strategies

Damage symptoms indicate that a pest could be influencing crop development and possibly yield potential. In some instances, damage symptoms will be observed without the pest. This may mean that the pest is there but cannot be observed or that the pest has caused the damage but since left the crop. In other instances, the pest will be observed but there will be no symptoms of damage to the crop. Knowledge of pest presence and crop damage should be used in combination to make pest management decisions.

Sampling is the process of collecting the day-to-day information on pest abundance and damage that is used to make pest management decisions.

Thresholds provide a rational basis for making decisions and are a means of keeping decisions consistent. Knowing the key beneficial predators and parasitoids for each pest is important for developing confidence in IPM approaches to pest management.

Selecting an insecticide (or miticide) can be a complex decision based on trade offs between preventing pest damage and conserving beneficials, or reducing one pest but risking the outbreak of another. All pests have survival strategies that allow them to live and breed in cotton farming systems.

Knowing the **survival strategies** that are employed by the pest can help with decision making at the farming systems-level (e.g. choice of rotation crops) and also can help to anticipate pest outbreaks.

Information in this section links to a number of tables in the Guide. Registration of a pesticide is not a recommendation for the use of a specific pesticide in a particular situation. Growers must satisfy themselves that the pesticide they choose is the best one for the crop and pest. Growers and users must also carefully study the container label before using any pesticide, so that specific instructions relating to the rate, timing, application and safety are noted. This publication is presented as a guide to assist growers in planning their IPM programs.

Growers must also ensure that their insecticide program fits in with the Insecticide Resistance Management Strategy for Helicoverpa, aphids and mites (see pages 68–73). Insecticides can be the most costly part of cotton production. Ensure that industry thresholds (pages 38–39) are followed to prevent unnecessary spraying.

Important— avoid spray drift

Take every precaution to minimise the risk of causing or suffering spray drift damage by:

- Planning your crop layout to avoid sensitive areas, including homes, school bus stops, waterways, grazing land and nontarget crops.
- Ensuring that all spray contractors have details of any sensitive areas near spray targets.
- Consulting with neighbours to minimise risks from spraying near property boundaries. Keep neighbours informed of your spraying intentions near property boundaries. Make it clear that you expect the same courtesy from them.
- Carefully following all label directions.
- Paying particular attention to wind speed and direction, air temperature and time of day before applying pesticides using buffer zones as a mechanism to reduce the impact of spray drift or overspray.
- Keeping records of chemical use and weather conditions at the time of spraying.

There are numerous references to endosulfan throughout this section. For information on the cancellation of endosulfan registration refer to page 156.

ABBREVIATIONS USED IN TABLES 1-18

ME = Microencapsulated
OL = Oil miscible liquid
SC = Suspension concentrate
SL = Soluble liquid
UIV = Ultra low volume
WDG = Water dispersible granule
WP = Wettable powder

INSECT PEST	MANAGEMENT AND REGISTERED CHEMICALS
Helicoverpa spp.	Page 10
Aphids	Page 14
Mirids	Page 19
Spider mites	Page 21
Whitefly	Page 26
Thrips	Page 30
Locusts	Page 31
Green vegetable bugs	Page 32
Pale cotton stainers	Page 34
Mealybug	Page 35
Other pests	Page 36–37

INSECTS

IMPORTANT – Use an integrated approach to pest management. For more information on Integrated Pest Management Guidelines for Australian cotton refer to Page 49.

TABLE 1: Seas Objective			Phases		
	Post harvest	Pre-planting	Planting to 1 flower per metre	1st flower to 1 open boll per metre	1 open boll per metre to harvest
1. Growing a healthy crop	Consider the best rotation crop for your situation. Test soil nutrient status to determine fertiliser requirements for cotton crop. Consider potential disease risks.	Seed bed preparation. Field and cotton variety selection. Plan irrigation and crop management strategies.	Consider planting window. Consider atplanting seed treatment, insecticides and other control options which do not disrupt beneficial insect activity.	Water management. Nutrient status. Growth control. Pest control.	Make final irrigation decisions. Defoliate when crop is mature. Keep on top of pests by using appropriate control options.
2. Keeping track of insects and damage	Sample cotton stubble for Helicoverpa armigera pupae after harvest.	Assess risk of wireworm, early thrips, mirids, mites and black field earwigs and decide on seed treatments, granular insecticides or in-furrow insecticide sprays.	Sample for pests, beneficials and parasitism rates in cotton as well as spring trap crop. Monitor early season damage. Track pest trends. Use pest thresholds and the predator to pest ratio.	Sample for pests, beneficials and parasitism rates. Track pest trends and incorporate parasitism into spray decisions. Monitor fruit load. Use pest thresholds and the predator to pest ratio.	Sample for pests, beneficials and parasitism rates in cotton as well as last generation trap crop. Monitor fruit load. Use pest thresholds and the predator to pest ratio. Cease pest control at 30–40% bolls open.
3. Preserving beneficial insects as well as birds and bats	Plant lucerne (strips or block) in autumn. Consider becoming involved in an IPM or AWM group. Discuss spray management plan with neighbours and consultant.	If planning to release Trichogramma during the season, plan to sow other crops eg. sorghum. Consider growing a diverse habitat and manage areas of native vegetation to encourage beneficials.	Sample for beneficials and parasitism rates. If chemical control of a pest is required, refer to the beneficial impact table. Keep track of your BDI and predator to pest ratio.	Sample beneficials. Consider releasing beneficial insects. Keep track of your BDI and predator to pest ratio. Food sprays may be considered. Manage lucerne appropriately.	Sample for beneficials. Encourage beneficials to reduce late season resistant pests by using food sprays and low impact insecticides.
Preventing insecticide resistance	Pupae bust to control overwintering Helicoverpa and mites as soon as possible after harvest. Plant spring trap crop. Review resistance management results. Reduce the availability of aphid and whitefly hosts over winter.	Consider Bollgard II refuge option. Consider choice of at – planting insecticides or seed treatment and implications for later aphid sprays.	Use pest and damage thresholds. Follow the IRMS strategy for your region. Encourage beneficials to help reduce resistant pests. Follow Bollgard II resistance management plan.	Use pest and damage thresholds. Follow the IRMS strategy for your region. Encourage beneficials to help reduce resistant pests. Follow Bollgard II resistance management plan.	Use pest and damage thresholds. Follow the IRMS strategy for your region. Encourage beneficials to help reduce resistant pests. Follow Bollgard II resistance management plan.
5. Managing crop and weed hosts	Keep farm weed free over winter. Control cotton re-growth and volunteers. Ensure host free period for insect pests and diseases	Carefully consider summer rotation crops (type and location). Keep farm weed free.	Keep farm weed-free.	Keep farm weed-free.	Consider winter rotation crops (type, location and the potential to host pest or diseases). Keep farm weed-free.
6. Using trap crops effectively	Plant spring trap crop. Consider flowering date to time planting.	Consider summer trap crop. Cultivate all chickpea trap crops by 30 September.	Consider last generation trap crop.	Monitor Helicoverpa populations in summer trap crop, control if necessary.	Destroy Helicoverpa eggs and larvae in last generation trap crop using biological sprays. Pupae bust last generation trap crop.
7. Communication and training	Consider becoming involved in an IPM or AWM group. Attend regional training and information seminars. Consider doing the IPM short course.	Communicate with neighbours and applicators to discuss spray management plans.	Meet regularly with neighbours and consultant to discuss IPM strategies and attend local field days.	Meet regularly with neighbours and consultant to discuss IPM strategies and attend local field days.	Meet regularly with neighbours and consultant to discuss IPM strategies and attend local field days.

TABLE 2: Im	pact of insect	icides	at pl	antin	g or	as se	ed treatmei	nts on k	ey benefi	cial grou	ps in co	tton	
			Main 1	target	pest(s)					Bene	ficial grou	р	
Insecticides	Rate (g ai/ha)	ww	Mite	Mir.	Aph.	Th ⁵	Persistence ⁶	Overall ⁷	Predatory beetles ¹	Predatory bugs ²	Spiders	Wasps and Ants	Thrips
At Planting													
Aldicarb	450		✓	✓	✓	✓	medium-long	very low ³	v. low	v. low	v. low	v. low	v. high
Phorate	600	✓	1	✓	✓	✓	medium-long	very low ^{3,4}	No data	No data	No data	No data	v. high
Carbosulfan	750–1000	1		1		✓	medium-long	very low ^{3,4}	No data	No data	No data	No data	v. high
Chlorpyrifos	250–750	1					medium	very low ⁴	No data	No data	No data	No data	No data
Seed Treatmen	ts												
Thiodicarb	500 g ai/100 kg seed					✓	short	very low ³	v. low	v. low	v. low	v. low	high
Thiodicarb + Fipronil	259 + 12 g ai/ 100 kg seed	1				✓	short-medium	very low ^{3,4}	No data	No data	No data	No data	high
Imidacloprid	525 g ai/100 kg seed	1			/	✓	medium	very low³	v. low	v. low	v. low	v. low	v. high
Imidacloprid	700 g ai/100 kg seed	/			1	√	medium	very low ^{3,4}	v. low	v. low	v. low	v. low	v. high
Thiomethoxam	280 g ai/100 kg seed	1			1	✓	medium	very low ^{3,4}	No data	No data	No data	No data	v. high

- 1. Predatory beetles ladybeetles, red and blue beetles, other predatory beetles.
- 2. Predatory bugs big-eyed bugs, minute pirate bugs, brown smudge bugs, glossy shield bug, predatory shield bug, damsel bug, assassin bug, apple dimpling bug.
- 3. Except for effects on thrips which are predators of mites. Note that aldicarb and phorate will also control mites.
- ${\hbox{\bf 4. Based on observations with other soil or seed applied insecticides.}}\\$
- 5. WW, wireworm; Mir., mirids; Aph., aphids; Th, thrips.
- Persistance; short, 2–3 weeks; medium, 3–4 weeks; long, 4–6 weeks.
 Impact rating (% reduction in beneficials following application); very low, less than 10%; low, 10–20%; moderate, 20–40%; high, 40–60%; very high, > 60%

INSECTS

			Pricity to bees 14	٦	۲	7	7	۸۲	_	۸	I	I	I	I	۸۲	I	H ¹⁵	Σ	۸۲	ΛH	ΛH	H ¹⁵	I	Ŧ	Ξ	Ξ	Ξ	M ¹⁵	_
		e 12	Helicoverpa	1	1	1	1	I	1	I	I	I	I	I	1	I	1	+ve	1	1	+ve	1	1	ı	1	+ve	+ve	1	+ve
	Pest	resurgence	bidqA	ı	ı	ı	ı	I	ı	I	+ve	1	+ve	+ve	1	I	ı	1	Ι	I	+ve	+ve	Ι	1	1	+ve	+ve	1	+ve
		resu	ətiM	I	I	I	I	I	I	I	I	I	I	I	I	I	+ve	I	I	+ve	+ve	Ι	I	I	1	+ve	+ve	1	1
			sqirdT	7	7	_	7	Λľ	K	_	٦/	۸۲	۸۲	۸۲	7	٦ſ	Ξ	_	۸۲	7	_	/	Σ	Σ	Σ	Σ	Σ	Ŧ	Σ
		ø	stnA	7	7	7	Ξ	K	7	۲	Ŧ	Ŧ	Ŧ	_	1	Σ	Ŧ	Ŧ	Σ	ΛH	H	¥	Σ	Ŧ	7	Ŧ	Ŧ	¥	Ŧ
		Hymenoptera	Тгісһодгатта	7	7	Σ	7	٦	/	7	7	7	7	1	Ι	I	Ŧ	7	_	Ι	Ι	/	Σ	Σ	Σ	Σ	Σ	1	Ŧ
		lymen	Eretmocerus 19	7	7	Σ	Ι	I	_	1	I	1	1	1	Σ	I	Ŧ	Ŧ	_	1	Ι	1	Ι	Ŧ	1	I	I	1	_
			(sqsew) letoT	7	٦	٨	۸۲	ΛΓ	۸۲	7	ΛΓ	7	_	_	Ι	7	Σ	L	L	L	L	L	Σ	Σ	Σ	Σ	Σ	۸۲	Σ
			Spiders	7	٦	٨	_	Λ	٦N	Σ	ΛΓ	۸۲	۸۲	۸۲	Γ	7	7	L	L	M	Σ	NL VI	Σ	Σ	Σ	_	_	Σ	Σ
			Lacewing adults	7	٦	۲	7	٦	_	M	Σ	Σ	Σ	H/	Ι	_	7	N.	Σ	L	L	M	ΛH	۸ľ	_	Σ	Σ	_	¥
			gnilqmid əlqqA	7	٦	٦	۲	۸۲	1	۲	Ξ	Ŧ	Ŧ	۸۲	L	_	_	Ξ	Ξ	M	Σ	ΛH	Σ	Ŧ	Ŧ	Σ	Σ	Ŧ	_
	icials	sbnq	Other Predatory bugs	7	٦	٦	7	٦٨	Ι	/	7	7	7	_	Ι	1	7	7	۸۲	7	Г	L	۸۲	Σ	Ξ	Ξ	Ŧ	_	7
	Beneficials	Predatory bugs	Big-eyed Bugs	γ.	٦٨	Σ	٦	7	I	/	Ι	Ι	Ι	7	Ι	٦٨	Ξ	\ \	_	Ι	I	L	۸۲	Σ	Ξ	Ι	I	Σ	₹
	_	Pred	Damsel bugs	٦	7	_	1	_	ı	7	7	_	_	7	Ι	I	_	Σ	L	Σ	Σ	Σ	۸ľ	7	Ŧ	_	_	Σ	Ŧ
u O			^C lstoT	7	7	_	7	_	7	٦/	٦	7	7	٦/	٦	Σ	Σ	_	L	٦	L	L	۸ľ	Σ	Ŧ	Σ	Σ	Σ	Σ
S		5	Other lady beetles	٦	1 /	۲	7	_	Σ	_	Σ	Σ	Σ	_	1	Σ	۸۲	Σ	Σ	۸ľ	۸۲	ΛH	Ξ	۸ľ	7	Ŧ	Ŧ	Σ	Σ
es in		eetle	Minute 2-spotted lady beetle	7	7	7	_	٦	Σ	1	Ŧ	Ŧ	Ŧ	Σ	ı	I	_	۸۲	Σ	_	_	ΛH	Ξ	Ŧ	Σ	Ŧ	Ŧ	¥	Ŧ
rasitoids and bees in cotton		Predatory beetles	Red & Blue beetle	7	7	۲	_	۸ľ	ı	7	_	_	_	Σ	Ι	_	Σ	Ŧ	Σ	L	L	_	L	Σ	۲	_	_	۲	Ŧ
s and		Preda	¹lstoT	۲	٦	۲	7	7	Σ	۲	_	_	_	_	_	_	۲	Σ	Σ	Γ	٦	H ¹⁴	Σ	_	_	Σ	Σ	Σ	Σ
toid			all ng 10	νo	WO	WO	wo	wo	WO	>	>	>	>	>	>	>	>	>	>	Λ	>	>	rate	rate	rate	rate	rate	rate	rate
			Overall Ranking ¹⁰	very low	very low	very low	very low	very low	very low	low	low	low	low	low	low	low	low	low	low	low	low	low	moderate	moderate	moderate	moderate	moderate	moderate	moderate
redators, pa			Persistence ⁸		very short	short	short	medium-long	long	short	medium	medium	medium	long	long	short	medium	medium	short	medium	medium	medium	medium	medium	medium	short	short	medium	medium
d uc	st(s)		Silverleaf whitefly						>									>					>						
des	Target pest(s)																									>	>	>	
itici	Targ		sbidqA			>	>											^	>				>			V18	V18	>	
E pc			sbiriM								>	>	>							^	>	>				>	>	>	
es ar			Helicoverpa Mites							>					>			>								√18	V18		>
icid			Rate (g ai/ha)	>	>	20	> %	<u> </u>	20	38.5	0	0	0	52.5 V	000	2500 🗸	<i>y</i> 96	350	150	8	~	127.5 $$		5.4 $\sqrt{6}$	4. >	0	80	367.5 V	1500
sect			fedlie n) ete8			250	7%	400	2	38	09	09	09	52	096	25	9	35	15	8	∞	127	96	5.	8.4	80	∞	36,	15
TABLE 3: Impact of insecticides and miticides on predators, pa			Insecticides (in increasing rank order of impact on beneficials)	Bt ¹¹	NP Virus	Pirimicarb	PSO (Canopy) ¹⁶	Methoxyfenozide	Pyriproxyfen	Etoxazole	Indoxacarb (low)	Indoxacarb (low+salt)	Indoxacarb (low+Canopy)	Rynaxypyr	Dicofol ³	Amorphous silica ¹⁷	Spinosad	Diafenthiuron	Pymetrozine	Fipronil (v. low)	Fipronil (v. low + salt)	Indoxacarb ¹³	Spirotetramat	Abamectin	Emamectin	Dimethoate (low)	Dimethoate (low + salt)	Endosulfan (low)	Propargite

Acetamiprid	22.5		^		medium	moderate	M	N N	H	H M	M N	Ξ	Σ	H_	_	۸۲	L	¥	Ξ	H.	ΛH	-	<u> </u>	<u> </u>	M ₁₅
Clothianidin (low)	25	\checkmark			medium	moderate	Σ	۸۲	<u> </u>	Н	Σ.	7	N.	Ξ	Ξ	M	M	н	Σ	ΛH	۸۲	1	-	+ve	
Amitraz	400 🗸	6	%		medium	moderate	Ξ	Σ	H	Н	1	1	1	Ξ	7	Σ	Σ	Ŧ	_	Ŧ	Σ	ŀ	1	1	_
Fipronil (low)	12.5	>		>	medium	moderate	7	_	<u>т</u>	7 7	Ξ.	_	_	¥	7	Σ	Σ	I	Σ	¥	Υ H	+ve +	+ + +	+ve V	H/
Chlorfenapyr (low)	200 🗸 🗓	>			medium	moderate	Σ	_	N H	VL N	M VL	Ξ.	Ξ	H_	7	-	Σ	I	ΗN	Ξ	Σ	ŀ		1	I
Thiamethoxam	100		^		medium	moderate	Ξ	н	<u>+</u>	Н	M	Σ	Ξ	Ξ	Δ	۸ľ	M	Ι	Ξ	¥	Ξ	+ve	÷ 	+ve	Ŧ
Endosulfan (high)	735 V	>	>	>	medium	moderate	Σ	\ \ \	N H	<u>N</u>	M	Σ	Σ	Ξ	7	Σ	7	Ξ	ΛH	ΗN	I			<u>≥</u>	M ¹⁵
Fipronil (high)	25	\checkmark		^	medium	moderate	-	۸۲	Н	L	M H	Ξ	_	NH.	_	M	M	Ι	Σ	NH.	VH +	+ve	+	+ve V	NH N
Imidacloprid	49	\checkmark	^		medium	moderate	н	_	H N	н	<u>Μ</u>	Ξ_	_	NH.	_	L	L	ΛH	Σ	Ŧ	Ξ	+ve	-	+ve	Σ
Clothianidin (high)	20	\checkmark			medium	moderate	н	۸۲		NH M	M N		NF NF	Ξ	Ξ	M	M	Η	Ξ	ΛH	٧L	+ve	-	+ve	
Methomyl	169 🗸				very short	high	н		V HV	VH N	M L	NH.	_	NH.	Σ	M	M	¥	Ŧ	Ŧ	н	+ve	<u>'</u>	1	H ¹⁵
Thiodicarb	750 🗸				long	high	ΝН	M	V HV	VH N	M	7	7	ΛH	NF NF	M	M	Ι	Σ	Σ	н	+ve +	+ve	_ 	M ₁₅
Dimethoate (high)	200	V18 V	V18 V	>	short	high	M	Σ	±	Н	Н	ı	Ξ	Ξ	¥	Σ	Ξ	Ŧ	н	ΛH	Σ	+ve	Ŧ	+ve	Ŧ
Chlorfenapyr (high)	400 🗸 🗸	>			medium	high	Ξ	Σ	H H		<u></u> τ	Ξ	Ξ	¥	_	Σ	Σ	I	ΛH	Η	Σ	+	+ve	_ 	I
OP's ⁵	<u>></u>	<i>></i>	>	>	short-medium	high	Ξ	Σ	<u>+</u> =	ェ	Σ	Ξ_	Ξ	¥	_	Σ	Ξ	¥	Ŧ	¥	Ξ	+ve		1	Ŧ
Carbaryl ³					short	high	Ξ	1		H	<u> </u>	1	1	1	1	1	1		Ι	1	Ŧ	Ī		_	Ŧ
Pyrethroids ⁴	>	√ √	7		√7 long	very high	ΛH	1	' 	<u>></u>	H∧	1	I	¥	¥	H/	M.	H _A	ΛH	H	Υ H	+ve +	+ve +	+ve	I

Total predatory beetles – ladybeetles, red and blue beetles, other predatory beetles

005

- fotal predatory bugs big-eyed bugs, minute pirate bugs, brown smudge bugs, glossy shield bug, predatory shield bug, damsel bug, assassin bug, apple dimpling bug
- Information; Citrus pests and their natural enemies, edited by Dan Smith; University of California Statewide IPM project, Cotton, Selectivity and persistence of key cotton insecticides and miticides.
 - Pyrethroids; alpha-cypermethrin, cypermethrin,beta-cyfluthrin, cyfluthrin, bifenthrin, fenvalerate, esfenvalerate, deltamethrin, lambda-cyhalothrin
 - Organophosphates; omethoate, monocrotophos, profenofos, chlorpyrifos, chlorpyrifos-methyl, azinophos ethyl, methidathion, parathion-methyl, thiometon
- Helicoverpa punctigera only.
- Bifenthin is registered for mite and silverleaf whitefly control, alpha-cypermethin, beta-cyfluthin, bifenthin, deltamethrin and lambda-cyhalothrin are registered for control of minds
- - Suppression of mites and aphids only.
- - Persistence of pest control; short, less than 3 days; medium, 3-7 days, long, greater than 10 days
- Bacillus thuringiensis
- Impact rating (% reduction in beneficials following application, based on scores for the major beneficial groups), VL (very low), less than 10%; L (low), 1-20%; M (moderate), 20-40%; H (high), 40-60%; VH (very high), > 60%. A -' indicates no data available for specific local
- i repeated applications of a particular product are likely to increase the risk of pest outbreaks or resurgence of the particular pest
- Very high impact on minute two-spotted ladybeetle and other ladybeetles for wet spray, moderate impact for dried spray.
- Data Source: British Crop Protection Council. 2003. The Pesticide Manual: A World Compendium (Thirteenth Edition)., Where LD50 data is not available impacts are based on comments and descriptions. Where LD50 data is available impacts are based on the following scale: very ow = LD50 (48h) > 100 ug/bee, low = LD50 (48h) < 100 ug/bee, moderate = LD50 (48h) < 10 ug/bee, high = LD50 (48h) < 1 ug/bee, very high = LD50 (48h) < 0.1 ug/bee, Refer to the Protecting Bees section in this booklet.
 - Wet residue of these products is toxic to bees, however, applying the products in the early evening when bees are not foraging will allow spray to dry, reducing risk to bees the following day
- May reduce survival of ladybeetle larvae rating of moderate for this group
- May be detrimental to eggs and early stages of many insects, generally low toxicity to adults and later stages
- Will not control organophosphate resistant pests (e.g. mites, some cotton aphid (Aphis gossypii) populations
- Rankings for Eretmocerus based on data for E. mundus (P. De Barro, CSIRO, unpublished) and for E. eremicus (Koppert B.V., The Netherlands (http://side-effects.koppert.nl#))

DISCAIMER Information provided is based on the current best information available from research data. Users of these products should check the label for further details of rate, pest spectrum, safe handling and application. Further information on the products can be obtained from the manufacturer.

Authors:

-ewis Wilson and Simone Heimoana, CSIRO Plant Industry Martin Dillon, Formerly CSIRO Entomology **Moazzem Khan, DEEDI Old* Robert Mensah,** DPI NSW*

Mark Wade, Formerly CSIRO Entomology Viliami Heimoana, Formerly DPI NSW Brad Scholz, Formerly DEEDI Qld Dave Murray, DEEDI QId*

Jonathan Holloway, Formerly DPI NSW Richard Sequeira, DEEDI QId Richard Lloyd, DEEDI QId Paul DeBarro, CSIRO

INSECTS Helicoverpa

Cotton bollworm

Helicoverpa armigera

Damage symptoms

Larvae attack all stages of plant growth. In conventional cotton (non-Bt varieties), larval feeding can result in; seedlings being tipped out, chewing damage to squares and small bolls causing them to shed, and chewed holes in maturing bolls, preventing normal development and encouraging boll rot. In any year an average of 15% of Bollgard II area may carry *Helicoverpa* larvae at or above the recommended threshold levels for a short period during peak to late flower. In Bollgard II cotton, chewing damage is mostly confined to fruit and may lead to yield loss.

Sampling

Sample the **egg and larval growth stages** of the pest. The growth stages of the cotton bollworm are defined as:

White egg WE pearly white Brown egg BE off-white to brown Very small larvae VS 0 mm-3 mm Small larvae S 3 mm-7 mm Medium larvae M 7 mm-20 mm Large larvae L > 20 mm

Eggs are laid on plant terminals, leaves, stems and the bracts of fruit. Larvae may be found on terminals, the upper or lower surface of leaves, inside squares, flowers and bolls and along stems. Sample the whole plant. If using CottonLOGIC, adopt the faster terminal sampling techniques for *Helicoverpa* as the season progresses and plant size increases. These are described in the IPM Guides for Australian Cotton II.

Sample **fruit retention** or fruiting factors once squaring begins, to gauge what level of damage is being caused to the crop. Sample **key beneficials**. This information will allow thresholds based on the predator to pest ratio to be applied. Collect eggs to check for parasitism by *Trichogramma*.

Frequency

Check at least 2 times/week in both conventional and Bollgard II crops.

Begin cotton bollworm sampling at seedling emergence. Cease sampling when the crop has 30–40% open bolls.

Methods

Through the entire season, cotton bollworms are most accurately sampled using visual methods. Check at least 30 plants or 3 separate metres of row for every 50 ha of crop. CottonLOGIC supports data entered either as number/metre row or as number/plant.

Larger samples will give more accurate estimates. Fields are rarely uniform, lush areas often occur in head ditches and these are more attractive to insects. The crop variability within the field may determine the minimum number of sampling points required.

Thresholds

Using eggs as the basis of a threshold can be very misleading as not all eggs hatch. Successful egg hatch has been measured to be 20% early season, 25% mid season and 40% late season. Early in the season eggs are particularly prone to desiccation and being washed or blown from the small plants. Parasitism and predation also reduce survival. *Trichogramma* parasitoids have the potential to reduce egg survival by over 90%. Larval thresholds are also impacted on by beneficial insects. Therefore it is important to assess beneficial insect numbers when making pest control decisions. Fruit retention can also be used to determine whether pests have caused or are at risk of causing economic damage.

Conventional cotton

Helicoverpa spp.

SEEDLING TO FLOWERING	FLOWERING TO CUT-OUT
2 larvae /m	2 larvae /m
or	or
1 larvae > 8 mm /m	1 larvae > 8 mm /m
	or
	5 brown eggs /m

CUT-OUT TO 15% OPEN BOLLS	15% TO 40% OPEN BOLLS
3 larvae /m	5 larvae /m
or	or
1 larvae > 8 mm /m	2 larvae > 8 mm /m
or	or
5 brown eggs /m	5 brown eggs /m

Bollgard II cotton

Calculation of spray thresholds in Bollgard II cotton should exclude larvae that are smaller than 3 mm and all eggs. Be sure to objectively assess larval size.

Helicoverpa spp.

SEEDLING TO 40% OPEN BOLLS

2 larvae > 3 mm /m in 2 consecutive checks or 1 larvae > 8 mm /m

Where larvae between 3 mm and 8 mm are observed on Bollgard II cotton, consecutive checks are essential for decision making. *Helicoverpa* spp. must feed in order to ingest the Bt toxin. If the number of 3–8 mm larvae are above threshold on a given check, chances are that a large portion of these will ingest sufficient dose of the toxin and die before the next check.

INSECTS Helicoverpa

Using the predator/pest ratio

The predator/pest ratio can be applied in conventional and Bollgard II cotton. The ratio is calculated as:

Total predators*

Helicoverpa spp. (eggs + VS + S larvae)

At least 30 plants or 3 separate metres of row by visual sampling or 20 metres of row by suction sampling is needed in order to use the ratio. The total number of predators must only include the key predator insects (marked with an asterisk in the list below). At least 3 of the key predator species need to be present. When the predator/pest ratio is 0.5 or higher, the Helicoverpa population should remain below the threshold of 2 larvae/m. The predator to pest ratio calculated above does not incorporate parasitoids, particularly Trichogramma, in the calculation. To use both predators and parasitoids, the level of egg parasitism should be deducted from the number of Helicoverpa eggs before the predator to pest ratio is calculated. Levels of egg parasitism can vary greatly from farm to farm, region to region and from season to season. Generally levels decline as the season progresses. Notes on how to monitor egg parasitism levels can be found in the IPM Guidelines, Objective 2, page 51. For more details on how to use the predator/pest ratio refer to the IPM Guidelines, Objective 3, page 56.

Key beneficial insects

Predators of eggs - red and blue beetle*, damsel bug*, green lacewing larvae*, brown lacewing*, ants, nightstalking spiders. **Predators of larvae** – glossy, brown* and predatory shield bugs, big-eyed bug*, damsel bug*, assassin bug*, red and blue beetle*, brown lacewing*, common brown earwig, lynx, tangleweb and jumping spiders.

Predators of pupae – common brown earwig **Predators of moths** – orb-weaver spiders and bats Parasitoids of eggs - Trichogramma spp., Telenomus spp. Parasitoids of larvae - Microplitis demolitor, orange caterpillar parasite, two-toned caterpillar parasite

Parasitoids of pupae – banded caterpillar parasite

Selecting an insecticide

The insecticide products registered for the control of Helicoverpa spp. in cotton are presented in Table 4 on page 13. The use of more selective insecticide options will help to conserve beneficial insects. Refer to Table 3 on pages 8–9. Insecticide resistance has declined in recent years. Some chemistries that once experienced moderate/high resistance now have lower resistance frequencies. The results from the insecticide resistance monitoring program can be accessed on the Cotton CRC website; www.cottoncrc.org. au/content/Industry/Publications/PestsandBeneficials/ InsectResistanceManagement.aspx.

*The total number of predators must only include the key beneficial insects marked by a similar *

Survival strategies

Resistance profile Conventional cotton

OCCASIONAL DETECTION OF RESISTANCE

Indoxacarb Spinosad emamectin benzoate chlorpyrifos (OP) profenofos (OP) bifenthrin (SP)

WIDESPREAD RESISTANCE

Endosulfan (OC) – low frequency methomyl/thiodicarb (carbamate) (moderate frequency) pyrethroids (high frequency)

CROSS RESISTANCE

A negative cross resistance exists between indoxacarb and pyrethroids. The esterases produced by *H. armigera* that are associated with pyrethroid resistance increase the insecticidal activity of indoxacarb.

There is a different mechanism of resistance for profenofos compared to chlorpyrifos and chlorpyrifos methyl. While all three belong to the OP chemistry group, profenofos is treated as a separate group in the IRMS.

Bollgard II cotton

A gene is present in field populations of *H. armigera* that has the potential to confer high-level resistance to Cry1Ac. CSIRO and Monsanto data suggests that this gene occurs at a low frequency which is probably less than one in a million. It is not cross-resistant to Cry2Ab and in certain environments is largely recessive. A gene that confers high level resistance to Cry2Ab is also present in field populations of *H. armigera*. This gene does not confer cross-resistance to Cry1Ac. In 2010-11 around 5-9% of the *H. armigera* population carried the *cry2Ab* resistance gene. Bollgard II's continued efficacy has become even more dependent on how the industry manages its refuges and implements the other elements of the resistance management plan (RMP). For further details, including information about recent changes in the frequency of cry2Ab resistance genes in H. armigera, refer to the Preamble to the RMP for Bollgard II on page 74.

Over-wintering habit

The cotton bollworm over-winters in cotton fields as diapausing pupae. These pupae are the major carriers of resistance from one season to the next. The initiation of diapause in the pupae is caused by falling temperatures and shortening day lengths. The proportion of pupae entering diapause increases from 0% in late February to +90% in late April – early May, depending on the region. Across all regions (Central Queensland, Macintyre, Namoi and Macquarie Valleys) diapause is initiated in at least 50% of pupae by the first week in April. Diapause termination is based on rising soil temperatures beginning in mid to late September in most regions. Emergence from diapause usually occurs over a 6 to 8 week period in each valley.

Alternative hosts

Spring host crops include; faba beans, chickpeas, safflower, linseed and canola. Pastures and weed flushes also sustain emerging spring populations. Summer host crops include; soybeans, mungbeans, pigeon pea, sunflower, sorghum and maize. The cotton bollworm will attack flowering crops of sorghum and maize preferentially over most other crop hosts.

Further Information:

CSIRO Narrabri

Sharon Downes: (02) 6799 1576 or 0427 480 967 Colin Tann: (02) 6799 1557 or 0429 991 501

DEEDI Qld, Toowoomba

Melina Miles: (07) 4688 1369

INSECTS Helicoverpa

Native budworm

Helicoverpa punctigera

Damage symptoms

Larvae cause early to mid season damage to terminals, buds, flowers and bolls of conventional cotton (non-Bt varieties) in a similar manner to *H. armigera*.

Sampling

Refer to the section on sampling cotton bollworm on the previous page. It is not possible to visually differentiate the eggs or early larval stages of the native budworm from the cotton bollworm, hence it is appropriate that these pests be sampled as one.

Thresholds

Refer to the section on thresholds for cotton bollworm on the previous page. The thresholds for *Helicoverpa* spp. are based on the assumption of potentially mixed populations of cotton bollworm and native budworm.

Key beneficial insects

Refer to the section on Key Beneficial Insects for the cotton bollworm. These predators and parasitoids also attack the native budworm.

Selecting an insecticide

The insecticide products registered for the control of native budworm in cotton in Australia are presented in Table 4 on page 13. The use of more selective insecticide options will help to conserve beneficial insects. Refer to Table 3 on pages 8–9.

Survival strategies

Resistance profile

Conventional cotton

Resistance to insecticides has only rarely been detected in Australia. In conventional cotton, the tendency for the native budworm to occur in mixed populations with the cotton bollworm often limits insecticide control options to those that are also efficacious on the cotton bollworm.

Bollgard II cotton

A gene is present in field populations of *H. punctigera* that has the potential to confer resistance to Cry1Ac. Researchers have established a colony containing this gene for further characterisation.

A gene that confers high level resistance to Cry2Ab is present in field populations of *H. punctigera*. In 2010–11 around 6–8% of the *H. punctigera* population carried a *cry2Ab* resistance gene. Bollgard II's continued efficacy has become even more dependent on how the industry manages its refuges and implements the other elements of the resistance management plan (RMP). For further details, including information about recent changes in the frequency of *cry2Ab* resistance genes in *H. punctigera* refer to the Preamble to the RMP for Bollgard II on page 75.

Over-wintering habit

The native budworm has the capacity to over-winter as pupae, but extensive research conducted in the early 1990s found that it is rarely observed to do so in cotton growing areas. However between 20–50% of overwintering pupae collected from numerous crops and fields in cotton regions during 2007 and 2008 were *H. punctigera* suggesting that this strategy may now

be more common. If conditions are favourable during winter, sparse but large populations survive and breed on native host plants in inland (central) Australia. As these winter annuals hay-off in spring, large migrations of moths may fly to cotton growing areas in eastern Australia.

Alternative hosts

The native budworm is not as closely associated with crop hosts as the cotton bollworm. The host range of the native budworm appears to be restricted to dicotyledonous (broad-leaved) hosts. Spring crop hosts include; faba beans, chickpeas, safflower, linseed and canola. Uncultivated hosts, particularly naturalised medics, are important in the initial buildup of the first spring generation. Summer crop hosts include; soybeans, mungbeans, pigeon pea and sunflower.

Further Information:

CSIRO Entomology, Narrabri

Sharon Downes: (02) 6799 1576 or 0427 480 967 Colin Tann: (02) 6799 1557 or 0429 991 501

DEEDI Qld, Toowoomba Melina Miles: (07) 4688 1369

Active ingredient	Concentration and formulation	Application rate of product	H. armigera resistance present	
		d native budworm, Helicov		
Abamectin	18 g/L EC	0.3 or 0.6 L/ha	No	For the control of <i>Helicoverpa</i> punctigera only. Use the higher rate alone or the lower rate with a suitable mixing partner. Do not use more than twice in one season for H. punctigera control.
Alpha -cypermethrin	16 g/L ULV 100 g/L EC	2.0, 2.5 or 3.0 L/ha 0.3, 0.4 or 0.5 L/ha	Yes	Use low rate for eggs or newly hatched larvae. Use higher rates for higher egg pressure or larger larvae.
Amitraz	200 g/L EC	2.0 L/ha	No	Apply as an ovicide with larvicide when eggs or very small larvae are detected. May suppress mites.
Amorphous silica	450 g/L SC	2.5–5.0 L/ha	No	Apply during egg lay to egg hatch. Best results are obtained from two sequential applications 6–7 days apart.
Bacillus thuringiensis	Btk SC	1.0–4.0 L/ha	No	Use alone or with mixtures. Refer to relevant label for details.
Beta-cyfluthrin	25 g/L EC	0.46–0.8 L/ha	Yes	Can be mixed with mineral spraying oil for ULV applications or with water for EC applications.
Bifenthrin	100 g/L EC 250g/L EC	0.6–0.8 L/ha 0.24–0.32L/ha	No	Time spray to coincide with egg hatch. DO NOT apply to larvae > 5 cm.
Chlorpyrifos	300 g/L EC	4.0–5.0 L/ha	No	Target sprays against brown eggs and newly hatched, very small and small larvae.
Chlorpyrifos- methyl	500 g/L EC	1.0–2.0 L/ha	No	Use the lower rate at or when just exceeding threshold levels. Increase rate as numbers increase.
Cyfluthrin	50 g/L EC	0.6 L./ha or 0.8 L/ha	Yes	Application should be timed to coincide with egg hatch.
Cypermethrin	40 g/L ULV 200 g/L EC 250 g/L EC 260 g/L EC	2.0–3.25 L/ha 0.3–0.7 L/ha 0.3–0.5 L/ha 0290–0.48 L/ha	Yes	Use high rate if <i>H. punctigera</i> larvae > 1 cm are present or <i>H. armigera</i> larvae < 5 cm are present.
Deltamethrin	5.5 g/L ULV 27.5 g/L EC	2.5–3.5 L/ha 0.5–0.7 L/ha	Yes	Use low rate as ovicide and high rates for small to medium larvae.
Emamectin benzoate	17 g/L EC	0.55–0.7 L/ha	No	Apply at or just prior to hatching.
Endosulfan	350 g/L EC	2.1 L/ha	Yes	Apply at or just prior to egg hatching. Larvae larger than 7–10 mm are not readily controlled. Ensure pesticide application management plan (PAMP) is completed.
Esfenvalerate	50 g/L EC	0.5–0.7 L/ha	Yes	Use low rate when larvae are small and pressure is low.
Ethion + zeta -cypermethrin	360 g + 20 g/L EC	2.0–2.5 L/ha	Yes	Application of low rate should be timed to coincide with egg hatch and small larvae.
Gamma -cyhalothrin	150 g/L CS	0.05 L/ha 0.06 or 0.07 L/ha	Yes	Ovicidal rate. Use low rate for newly hatched larvae.
Indoxacarb	150 g/L EC	0.65 or 0.85 L/ha	No	Use low rate for eggs and small larvae.
Lambda	250 g/L ME	0.06 L/ha,	Yes	Ovicidal rate.
-cyhalothrin	2000 14 01 4 14 6	0.07 or 0.085 L/ha		Use low rate for newly hatched larvae.
Helicoverpa NPV	2000 M-Obs/mL LC	0.5 L/ha	No	Alone or with compatible larvicide. See label for details. Target application to coincide with egg hatching.
Magnet		0.5L/100 m row (10–50 cm bands) in 72 m or 36 m		Use including insecticides as per label instructions
Methomyl	225 g/L SL	0.5–1.0 L/ha 1.8–2.4 L/ha	Yes	Ovicidal rate. Larvicidal rate. Higher rate of larvicidal rate may cause reddening of foliage, if excessive use an alternative. Do not apply during periods of plant stress.
Methoxyfenozide	240 g/L SC	1.7 L/ha or 2.5 L/ha	No	Apply with recommended adjuvant. Use high rate on rapidly growing crops.
Paraffinic oil	792 g/L	2% or 2L/100L of water	No	See page ## for thresholds. Use a minimum of 80L/ha of water. Apply only by ground rig before crop closure.
Parathion methyl	500 g/L EC	1.4-2.8 L/ha	Yes	Apply to larvae < 10 mm in length.
Piperonyl butoxide	800 g/L EC	0.3–0.4 L/ha		Use as a synergist when applying synthetic pyrethroids. See label.
Profenofos	250 g/L EC 500 g/L EC	3-4 L/ha 1.5-2.0L/ha	Yes	Applications should target hatching and vs larvae. Use higher rate for heavier pressure and larger larvae.
Rynaxypyr (chlorantraniliprole)	350 g/kg WDG	0.090 or 0.150 g/ha + non ionic surfactant @ 125 gai/100 L	No	Target brown eggs or hatchling to 2nd instar larvae before they become entrenched in squares, flowers and bolls. Use high rate where the potential is for >3.5 larvae/m to achieve longer residual control.
Spinosad	800 g/kg	90 – 120g/ha		Use low rate against light infestations. target sprays against brown eggs and newly hatched very small larvae
Thiodicarb	375 g/L SC 800g/L WG	0.5–1.0L/ha 2.0-2.5L/ha 0.235–0.470 kg/ha 0.940–1.2kg/ha	Yes	This product has ovicidal and larvicidal activity. See label for details.
Thiodicarb	375 g/L SC	2.0–2.5 L/ha 0.5–1.0 L/ha	Yes	Larvicidal rate. Ovicidal rate.

INSECTS Aphids

Aphids

Cotton aphid – Aphis gossypii Green peach aphid – Myzus persicae Cowpea aphid – Aphis craccivora

Cotton aphid is the most common aphid pest in cotton. Green peach aphid is occasionally a pest of young cotton but declines through the hotter part of the year. Cowpea aphid will colonise cotton but rarely becomes a problem.

Damage symptoms

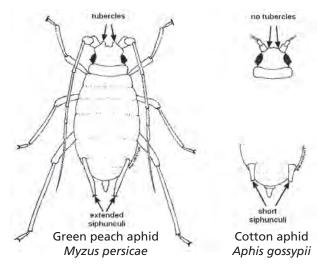
Nymphs and wingless adults of cotton aphid cause early to late season damage to terminals, leaves, buds and stems. Cotton aphids have been shown to transmit the disease Cotton Bunchy Top (CBT). CBT is described on page 124. Once bolls begin to open, the sugary 'honeydew' excreted by aphids can contaminate the lint.

Sampling

Sampling should focus on non-winged adults together with their nymphs. Winged adults may be transitory, while the presence of non-winged adults together with their nymphs indicates a population has settled in the crop.

Sample for Species and Population

Species: Verify which aphid species is present before implementing any management strategies. Cotton aphid is more common and can be a vector of CBT, but green peach aphid can cause more severe damage than cotton aphid at lower densities. Cotton aphid can be distinguished from green peach aphid by close examination with a hand lens. The distinguishing features are presence or absence of tubercles (on the head between the antenna), and the length of the siphunculi (between the back legs). As depicted in the diagrams above, green peach aphid has tubercles and long siphunculi. Cotton aphid doesn't have tubercles (the head is smooth between the antenna) and the siphunculi between the back legs are very short. If you are unable to make a determination, or suspect both could be present, contact Lewis Wilson, CSIRO Plant Industry at Narrabri, to arrange for a sample to be sent for identification. Contact details are provided at the end of this section.


Population: Sample for non-winged adults and nymphs on the underside of mainstem leaves 3–4 nodes below the plant terminal. If a high proportion of plants have only the winged form, recheck within a few days to see if they have settled and young are being produced.

Frequency

Check the **population** at least weekly. Begin aphid sampling at seedling emergence and continue until defoliation. The **species** composition may change during the season. Particularly when aphid infestation occurs early in the season, the species should be verified on more than one occasion during the season.

Methods

Seedling to first open boll: Use a 0–5 scoring system based on the number of aphids /leaf. The protocols for scoring aphids are presented in full on pages 17–18. The presence/absence sampling method is no longer recommended during this part of the season as recent research has found that this technique has poor precision in the range from 80–100% plants infested. If hot spots of cotton aphid are found early season, monitor cotton for symptoms of CBT.

First open boll to harvest: Use a presence/absence scoring system. Check one leaf /plant. Choose a recently expanded leaf, close to the plant terminal. Only score a plant as infested if there are 4 or more non-winged aphids within 2 cm². Aphids are most abundant on the edges of fields so ensure perimeter sampling occurs. Assess plants for the presence of honeydew.

Thresholds and Cotton Bunchy Top

From the seedling stage through until first open boll, thresholds are based on the potential for feeding change of the aphid population to reduce yield. These thresholds are dynamic, allowing the grower/consultant to consider the value of the crop and the cost of control as part of the decision. After first open boll the thresholds aim to protect the quality of the lint by avoiding contamination from honeydew. As penalties for honeydew contamination are severe, thresholds aim to limit honeydew contamination to trace amounts.

There is also a risk that yield loss can occur through crop infection with CBT. These thresholds do not take into account the risk of yield loss due to CBT. Recent research has shown that risks of CBT spreading through crops and affecting yield are low unless significant populations of ratoon cotton or alternative weed hosts are neighbouring or within the field. If there are many hosts of CBT near the field and a large influx of aphids occurs, control may be required to prevent spread of CBT. In these situations the development and spread of aphids should be monitored intensively (at least twice weekly), and any hotspots checked for the presence of plants showing CBT symptoms. Mark aphid hotspot areas and return to them to check aphid survival. If it is low, then no action may be needed; but if populations are healthy, increasing and spreading, control may be required to prevent transmission of CBT within the crop. If control is needed choose a selective option to conserve beneficials. Removing cotton ratoons/volunteers and weeds in and around fields well before cotton planting will reduce winter survival of aphids and carryover of CBT in these hosts.

Cotton aphid

SEEDLING TO FIRST OPEN BOLL

Calculate the Cumulative Season Aphid Score (page 18)

FIRST OPEN BOLL TO HARVEST

50% plants infested or 10% if trace amounts of honeydew present

Aphids INSECTS

Green peach aphid

SEEDLING TO FLOWERING FLOWERING TO HARVEST

25% plants infested

Populations decline in hot weather. Highly unlikely to be present postflowering.

Key beneficial insects

Predators - lady beetle larvae and adults, red and blue beetles, damsel bugs, big-eyed bugs, lacewing larvae, hoverfly larvae. Parasitoids - Aphidius colemani, Lysiphlebus testaceipes (these cause mummification).

Selecting an insecticide

The insecticide products registered for the control of cotton aphid and green peach aphid in cotton in Australia are presented in Table 5 on page 16. If aphid control is required early season, use a selective option to help conserve beneficial populations, in accordance with the IRMS. These beneficials can assist in controlling any survivors from the insecticide.

Survival strategies

Resistance profile - Cotton aphid

WIDESPREAD, HIGH WIDESPREAD, LOW/MOD **LEVELS OF RESISTANCE LEVELS OF RESISTANCE**

acetamiprid, clothianidin thiamethoxam, and imidacloprid (chloronicotinyl)

OCCASIONAL DETECTION OCCASIONAL DETECTION OF HIGH LEVELS OF OF LOW LEVELS OF **RESISTANCE RESISTANCE**

pyrethroids (SP) dimethoate (OP)

endosulfan (OC) chlorpyrifos-methyl (OP)

omethoate (OP) profenofos (OP)

pirimicarb (carbamate)

CROSS RESISTANCE

Strong cross-resistance between omethoate or dimethoate and pirimicarb Strong cross-resistance between all the chloronicotinyls (neonicotinoids)

Neonicotinoid resistance is now widespread and there is cross resistance between acetamiprid, thiamethoxam, imidacloprid and clothianidin.

Aphids and mummies. (Lewis Wilson, CSIRO)

A significant reduction in selection pressure will be needed before neonicotinoid resistance declines. This will likely require the judicial use of neonicotinoid foliar sprays. It remains critical to follow the recommendations of the industry's IRMS and rotate insecticide chemistries taking into account the insecticide group of any seed treatment (currently all commercially treated seed includes a neonicotinoid, refer to table 19) or at-planting insecticide.

Additionally, a critical part of the IRMS for aphids is the 30+ day gap between the end of pirimicarb window and the start of the dimethoate/omethoate window because of cross resistance. Neonicotinoid resistance places strong pressure on pirimicarb and dimethoate/omethoate and attention should be paid to the effective management of these valuable products.

Resistance profile -Green peach aphid

HIGH LEVELS OF LOW / MOD LEVELS OF RESISTANCE RESISTANCE dimethoate (OP) pirimicarb (carbamate) omethoate (OP) profenofos (OP) chlorpyrifos (OP) monocrotophos (OP) **CROSS RESISTANCE (DIFFERENT TO COTTON APHID)**

No cross-resistance between omethoate or dimethoate and pirimicarb

Over-wintering habit

Aphids don't have an overwintering form, but cool temperatures slow the growth rate of aphids dramatically. In cotton growing areas aphids persist through winter on whatever suitable host plants are available, including cotton volunteers and ratoons.

Alternative hosts

Cotton aphid has a broad host range, including many common weeds. Winter weed hosts include; marshmallow, capeweed and thistles. Ratoon or volunteer cotton is a host and may also carryover the CBT disease. Some legume crops such as faba beans are also potential winter hosts. Spring and summer weed hosts include; thornapples, nightshades, paddymelon, bladder ketmia and Bathurst burr. Sunflower crops and volunteers also accommodate the cotton aphid.

Winter weeds that support green peach aphids include; turnip weed and marshmallow. Spring germinations of peach vine and thornapples also host green peach aphid. Canola is an attractive host crop through late winter and early spring.

Further Information CSIRO Plant Industries, Narrabri

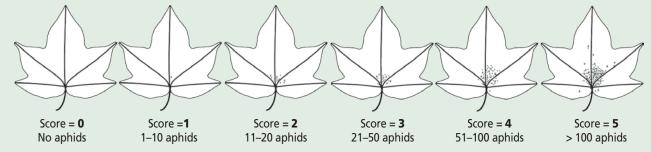
Lewis Wilson: (02) 6799 1550 or 0427 991 550

DPI NSW, Camden

Grant Herron: (02) 4640 6471

INSECTS Aphids

Active ingredient	Concentration and formulation	Application rate of product	A. gossipii resistance detected	Comments
Cotton aphid Aph	is gossypii and Green p	each aphid <i>Myzus (</i>	persicae	
Acetamiprid	225 g/L SL	0.05–0.1 L/ha	Yes	Ensure good coverage. Use high rate under sustained heavy pressure.
Aldicarb	150 g/kg G	3.0–7.0 kg/ha	No	Apply into the seed furrow at sowing. Refer to the label for the method of distribution.
Amitraz	200 g/L EC	2.0 L/ha	No	Suppression when used for controlling Helicoverpa.
Chlorpyrifos	300 g/L EC, EC/ULV 500 g/L EC	0 5–0.7 L/ha 0.3–0.4 L/ha	No	Use higher rates on heavy infestations.
Clothianidin	200g/L SC	0.125–0.25L/ha	Yes	Apply when aphid numbers are low and beginning to build.
Diafenthiuron	500 g/L SC	0.6 or 0.8 L/ha	Yes low level	Apply before damage occurs. Only use lower rate when spraying by ground rig.
Dimethoate	400 g/L EC	0.5 L/ha	No	Do not use where resistant strains are present.
Disulfoton	50 g/kg G	14.0 kg/ha	No	Apply in band near seed at planting.
Endosulfan	350 g/L EC	2.1 L/ha	No	Apply at first sign of infestation. Ensure pesticide application management plan (PAMP) is completed.
Imidacloprid	200 g/L SC	0.25 L/ha	Yes	Add Pulse penetrant at 0.2% v/v (2 mL/L water)
Omethoate	800 g/L SL	0.25 L/ha	No	Apply by ground or air.
Paraffinic oil	792 g/L	2% or 2L/100 L of water	No	Apply by ground rig using a minimum of 80L/ha of water. If populations exceed 20 per terminal use in a mixture with another aphicide.
Parathion-methyl	500 g/L EC	0.7–1.4 L/ha	No	Use low rate on light infestations and open crops. Ground application only. Higher rate in NSW only.
Phorate	100 g/kg G	6.0 kg/ha	No	For short residual control.
		11.0–17.0 kg/ha	No	For extended period of control. Only use the highest rate on heavy soils when conditions favour good emergence.
	200 g/kg G	3.0 kg/ha	No	For short residual control.
		5.5–8.5 kg/ha	No	NSW registration only.
Pirimicarb	500 g/kg WDG, WP	0.5 or 0.75 kg/ha	No	Thorough spray coverage essential for best results.
Profenofos	250 g/L EC 500 g/L EC	2.0 L/ha 1.0 L/ha	No	Spray timing is important. For best results apply when pest levels have reached commercial thresholds.
Pymetrozine	500 g/kg WDG	0.4 kg/ha	No	Apply to an actively growing crop prior to cut out. Add 0.2% v/v organosilicone surfactant.
Spriotetramat	240g/L SC	0.3–0.4L/ha	No	Add Hasten Spray Adjuvant 1.0L/ha. Use the higher rate when periods of high pest pressure or rapid crop growth are evident, when longer residual control is desired or when crops are well advanced. Do not re-apply within 14 days of a previous Movento spray. Do not apply more than 2 applications per crop.
Thiamethoxam	250 g/kg WDG	0.2 kg/ha	Yes	Add 0.2% w/v organo-silicone surfactant. Apply to aphid population in early stages of development. DO NOT apply more than twice per season or as consecutive sprays.

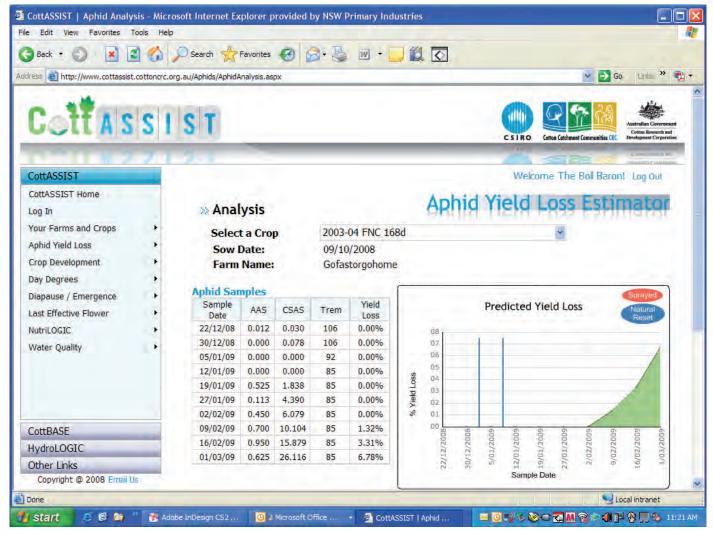

SAMPLING PROTOCOLS FOR COTTON APHID FOR USE UNTIL FIRST OPEN BOLL

STEP 1. COLLECT LEAVES.

Fields should be sampled in several locations as aphids tend to be patchy in distribution. At each location collect at least 20 leaves, taking only one leaf per plant. Choose mainstem leaves from 3–4 nodes below the terminal. The same leaves can also be used for mite and whitefly scoring. It is important to sample for aphids regularly, even if it is suspected that none are present. The estimate of yield loss will be most accurate when sampling detects the time aphids first arrive in the crop.

STEP 2. SCORE LEAVES.

Allocate each leaf a score of 0, 1, 2, 3, 4 or 5 based on the number of aphids on the leaf. After counting aphids a few times, you will quickly gain confidence in estimating abundance. As a guide, the diagrams below represent the minimum population for each score. Discount pale brown bloated aphids as these are parasitised. Sum the scores and divide by the number of leaves to calculate the Average Aphid Score.



STEP 3. USE THE APHID YIELD LOSS ESTIMATOR ON THE WEB.

In order to estimate yield loss, the Average Aphid Score must firstly be transformed into a Sample Aphid Score and then into a Cumulative Season Aphid Score. Record keeping and calculation of these Scores can be simplified by using the Aphid Yield Loss Estimator in CottASSIST on the web. The Tool allows users to keep records for multiple crops on multiple farms throughout the season. After initial set up, the user enters the Average Aphid Score from Step 2 and the date of each check. The Tool then calculates the Scores and tracks the estimate of yield loss. Find CottASSIST on the 'Industry' home page in the Cotton CRC website.

Alternatively, the Scores can be calculated manually by following Steps 4 and 5.

Example yield loss estimate from the Aphid Yield Loss Estimator web tool.

INSECTS Aphids

STEP 4. MANUAL CALCULATION OF THE CUMULATIVE SEASON APHID SCORE.

Use the Look Up Table below to firstly convert the Average Aphid Score calculated in Step 2 to a Sample Aphid Score. This step accounts for the length of time the observed aphids have been present in the crop. If aphids are found in the first assessment of the season, assume the 'Score last check' was '0' and that it occurred 5 days ago.

Find the value in the table where 'this check' and the 'last check' intersect. Multiply this value by the number of days that have lapsed between checks. This value is the Sample Aphid Score.

As the season progresses, add this check's Sample Aphid Score to the previous value to give the Cummulative Season Aphid Score.

When aphids are sprayed, or, if during the season the Average Aphid Scores return to '0' in 2 consecutive checks, reset the Cummulative Season Aphid Score to '0'. Disappearance of aphids can occur for reasons such as predation by beneficials, changes in the weather and insecticide application.

Average score last					Avera	ge score this	check				
check	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
0	0.0	0.3	0.5	0.8	1.0	1.3	1.5	1.8	2.0	2.3	2.5
0.5	0.3	0.5	0.8	1.0	1.3	1.5	1.8	2.0	2.3	2.5	2.8
1.0	0.5	0.8	1.0	1.3	1.5	1.8	2.0	2.3	2.5	2.8	3.0
1.5	0.8	1.0	1.3	1.5	1.8	2.0	2.3	2.5	2.8	3.0	3.3
2.0	1.0	1.3	1.5	1.8	2.0	2.3	2.5	2.8	3.0	3.3	3.5
2.5	1.3	1.5	1.8	2.0	2.3	2.5	2.8	3.0	3.3	3.5	3.8
3.0	1.5	1.8	2.0	2.3	2.5	2.8	3.0	3.3	3.5	3.8	4.0
3.5	1.8	2.0	2.3	2.5	2.8	3.0	3.3	3.5	3.8	4.0	4.3
4.0	2.0	2.3	2.5	2.8	3.0	3.3	3.5	3.8	4.0	4.3	4.5
4.5	2.3	2.5	2.8	3.0	3.3	3.5	3.8	4.0	4.3	4.5	4.8
5.0	2.5	2.8	3.0	3.3	3.5	3.8	4.0	4.3	4.5	4.8	5.0

STEP 5. MANUAL CALCULATION OF THE YIELD LOSS ESTIMATE.

Use the table to estimate the yield loss that aphids have already caused, and note that this does not take into account risks of yield loss from Cotton Bunchy Top disease. The 'Time Remaining' in the season needs to be determined the first time aphids are found in the crop. The data set is based on 165 days from planting to 60% open bolls. If for example aphids are first found 9 weeks after planting, the Time remaining would be ~100 days. As the Season Aphid Score accumulates with each consecutive check, continue to read down the '100' days remaining column to estimate yield loss. When aphids are sprayed, or, if aphids disappear from the crop then reappear at a later time, reassess the time remaining based on the number of days left in the season at the time of their reappearance.

Crop sensitivity to yield loss declines as the crop gets older. The estimate takes into account factors that affect the rate of aphid population development, such as beneficials, weather and variety. Yield reductions >4% are highlighted, however the value of the crop and cost of control should be used to determine how much yield loss can be tolerated before intervention is required.

Cumulative Season		Time	Remaining (d	lays until 609	% open bolls	at the time v	when aphids	are first obse	erved)	
Aphid Score	100	90	80	70	60	50	40	30	20	10
0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
10	2	2	1	1	1	0	0	0	0	0
15	5	4	3	3	2	1	1	0	0	0
20	7	6	5	4	3	2	1	1	0	0
25	9	8	7	6	5	3	2	1	0	0
30	11	10	8	7	6	5	3	2	1	0
40	15	13	12	10	8	7	5	3	1	0
50	19	17	15	13	11	9	7	5	2	0
60	23	21	18	16	13	11	8	6	3	1
80	31	28	25	22	18	15	12	8	5	1
100	38	34	31	27	23	19	15	11	7	2
120	45	41	37	32	28	23	18	13	9	3

Mirids INSECTS

Mirids

Green mirid – *Creontiades dilutus* **Brown mirid** – *Creontiades pacificus*

Both the green and brown mirids are similar in appearance, however brown mirids are slightly larger and carry more dark pigments. While the brown mirid can cause similar damage at boll stage, at squaring stage they can cause lower damage than green mirids and they are usually found in much lower numbers than the green mirid on cotton and move they to cotton later than the green mirid.

Damage symptoms

Adults and nymphs cause early season damage to terminals and buds and mid season damage to squares and small bolls. Types of damage include blackening and death of terminals of young plants, rapid square loss without the presence of *Helicoverpa spp.* larvae and blackening of pinhead squares. Bolls that are damaged during the first 10 days of development will be shed, while bolls damaged later than this will be retained but not continue normal development and will incur yield loss. Black, shiny spots indicate feeding sites on the outside of bolls. When sliced open warty growths and discolouration of the immature lint can be seen within the boll.

Sampling

Sample for adults and nymphal instars of the pest. Mirids are a very mobile pest and are easily disturbed during sampling. It is important to include nymphs in the assessment as 4th and 5th instars cause similar amounts of damage to adults.

Sample fruit retention and types of plant damage that are symptoms of mirid feeding such as tip damage (early season) and boll damage (mid season).

Frequency

Sample at least 2 times/week.

Begin sampling at seedling emergence and continue sampling until last effective boll is at least 20 days old.

Methods

Use visual assessment of whole plants, a beat sheet or sweep net. All methods give comparable estimates of mirid abundance when plants are young. As the season progresses, the efficacy of whole plant visual sampling declines. Once the crop reaches 9–10 nodes, sample using either the beat sheet or sweep net. When beat sheeting, each sample consists of the row of plants being vigorously pushed 10 times with a 1 m stick towards the sheet. Preliminary research has shown that the number of samples required for a good estimation of mirid numbers is between 8–10.

When using a sweep net, a sample can consist of 20 sweeps along a single row of cotton using a standard (380 mm) sweep net. Preliminary research has shown that at least 6 sweep samples are required to achieve a good estimation of mirid numbers.

It is essential to monitor fruit retention and signs of fruit damage as part of gauging the impact mirids are having on the crop. Not all bolls that are damaged by mirids will be shed, so it is important to monitor bolls for mirid damage.

Thresholds

Research by Dr Moazzem Khan, DEEDI Qld, has confirmed that yield loss due to mirid feeding varies with crop stage. Different thresholds apply at different times of the season,

depending on the crop's capacity to compensate for the damage incurred. When applying the thresholds, always use the crop damage component together with the mirid numbers.

The highest risk stage is mid season when bolls are young. From first flower until the time when $\sim\!60\%$ of bolls are 20 days old, the crop is most susceptible to fruit loss from mirid damage that will impact on yield. The crop has greater capacity to recover from earlier fruit loss during the squaring stage provided plants do not suffer from any other stress such as water stress. Once bolls are 20 days old the boll wall is hard enough to deter mirid feeding and minimal damage occurs.

8							
		Planting to 1 flower/m	Flowering to 1 open boll/m	1 open boll/m to harvest			
Adults or nyr	mphs/m						
Visual	cool region	0.7	0.5	-			
Sampling	warm region	1.3	1.0	-			
Beatsheet	cool region	2	1.5	-			
Sampling	warm region	4	3	-			
Adults or nyr	mphs/sample						
Sweep net Sampling*	cool region	2 adults + 1.1 nymphs	1.5 adults + 0.8 nymphs	-			
	warm region	4 adults + 2.1 nymphs	3 adults + 1.6 nymphs	-			
Crop damage	•						
Fruit retention	l	60%	60-70%	-			
Boll damage		-	20%	20%			
Tip damage (9 affected)	% of plants						
(light**)		50%	-	-			
(heavy***)		20%	-	-			
* After 9–10 nodes ** Light tip damage – embryo leaves within the terminal are black. *** Heavy tip damage – terminal and 2–3 uppermost nodes are dead.							

The use of a beatsheet is recommended for counting the numbers of mirid adults and nymphs present in the crop. The relative importance of the % fruit retention and % boll damage reverses as the season progresses. From the start of squaring through until cut-out, place the emphasis on fruit retention. Not all bolls that are damaged by mirids will be shed. Bolls that are damaged between 10 and 24 days of age will be retained but develop with reduced boll size and lint yield. As the season progresses, the proportion of the retained bolls that are damaged becomes more critical.

Key beneficial insects

There are no beneficial species that are recognised to be regulators of mirid populations in cotton, however damsel bugs, big-eyed bugs, predatory shield bugs, as well as lynx, night stalker and jumping spiders are known to feed on mirid adults, nymphs and eggs.

Selecting an insecticide

The insecticide products registered for the control of green mirid in cotton in Australia are presented in Table 6 on page 20. The use of more selective insecticide options will help to conserve beneficial insects (see Table 3 on pages 8–9). For last few years research by DEEDI Qld entomologists has showed that salt mix with low rate of chemical increase efficacy against mirid and stinkbug but reduce impact on beneficials. However, to date, only one chemical (Steward) has registration to mix with salt. Early season use of dimethoate for the control of green mirids may inadvertently select for carbamate resistance in aphids.

INSECTS Mirids

Survival strategies

Resistance profile

No resistance to insecticides has been detected in Australia as there is no resistance monitoring program for green mirids. It is possible that resistance to insecticides could develop if a proactive approach to preventing resistance is not taken.

Overwintering habit

Mirids are known to survive on weeds and native plant hosts surrounding cotton fields. They are also known to breed on native hosts in inland (central) Australia in winter and can migrate to cotton growing areas in spring in a similar way to the native budworm (see section on Native Budworm, page 12).

Alternative hosts

Mirids distinctly prefer lucerne to cotton. Lucerne strips or blocks can be used as trap crops to prevent the movement of mirids into cotton crops. If using lucerne to manage green mirids, the lucerne should not be allowed to flower, seed or hay-off. Slashing half the lucerne at 4 weekly intervals and irrigating will ensure that fresh lucerne regrowth is constantly available for mirid feeding, thus preventing the movement

into cotton. Other crop hosts include soybeans, mungbeans, pigeon pea, safflower and sunflowers. It is assumed that mirids migrate between these crops. Weeds hosts include turnip weed, noogoora burr, variegated thistle and volunteer sunflowers.

Further Information

CSIRO Plant Industries, Narrabri

Mary Whitehouse: (02) 6799 1538 or 0428 424 205

DPI NSW, Narrabri

Robert Mensah: (02) 6799 1525 or 0429 992 087

DEEDI Qld, Toowoomba

Moazzem Khan: (07) 4688 1310 or 0428 600 705

TABLE 6: Contro	l of mirids		
Active ingredient	Concentration and formulation	Application rate of product	Comments
Mirids (Green mirid C	reontiades dilutus an	d Yellow mirid or Apple	dimpling bug Campylomma liebknechti)
Acetamiprid	225 g/L SC	0.1 L/ha	Apply with 0.2% Incide penetrant. Target nymphs and/or adults. On above threshold or increasing populations, suppression only may be observed.
Aldicarb	150 g/kg G	5.0 kg/ha	Apply into the seed furrow at planting.
Alpha-cypermethrin	16 g/L ULV 100 g/L EC	2.0–2.5 L/ha 0.3–0.4 L/ha	Apply at recommended threshold levels as indicated by field checks. Use the higher rate when pest pressure is high and increased residual protection is required.
Beta-cyfluthrin	25 g/L EC	0.6 L/ha	When Helicoverpa spp. are present follow Helicoverpa spp. instructions. Otherwise apply at threshold levels as determined by field checks.
Bifenthrin	100 g/L EC 250 g/L EC	0.6–0.8 L/ha 0.24–0.32 L/ha.	Apply at recommended threshold levels as indicated by field checks. Use the higher rate for increased pest pressure and longer residual control.
Chlorpyrifos-methyl	500 g/L EC	1.0–2.0 L/ha	Apply when pest numbers approach threshold levels.
Clothianidin	200 g/L SC	0.125–0.25L/ha + Maxx Organsilicone Surfactant 0.02 L/L of water	Apply when numbers reach threshold levels requiring treatment
Deltamethrin	27.5 g/L EC	0.18 L/ha	Suppression only.
Dimethoate	400 g/L EC	0.34–0.5 L/ha	Apply when pests appear.
Emamectin benzoate	17 g/L EC	0.55–0.7 L/ha	For suppression only. Apply to developing populations that are predominantly nymphs.
Fipronil	200 g/L SC 800 g/kg WG	0.0625–0.125 L/ha 15.5–30 g/ha	Apply spray to achieve thorough coverage. Use higher rate under sustained heavy pressure.
Gamma-cyhalothrin	150 g/L CS	0.05 L/ha	Apply at recommended threshold levels as indicated by field check.
Imidacloprid	200 g/L SC	0.25 L/ha	Add Pulse penetrant at 0.2% v/v (2 mL/L water). See withholding period.
Indoxacarb	150 g/L EC	0.65 L/ha or 0.85 L/ha	Under high populations suppression only may be observed.
Indoxacarb + Salt	150 g/L EC	0.3 or 0.4L/ha + Salt (NaCl) at 5 g/L spray volume by ground (100 L/ha) or 10 g/L spray volume by air (30 L/ha).	For controlling green mirids ONLY. Use the higher rate on infestations exceeding economic spray threshold levels and/or large canopy crops.
Lambda-cyhalothrin	250 g/L ME	0.06 L/ha	Apply at recommended threshold levels as indicated by field checks.
Omethoate	800 g/L SL	0.14–0.28 L/ha	Use high rate where population exceeds 1/m row.
Paraffinic Oil	792 g/L SL	2–5% v/v or 2–5 L/100 L of water	Apply low rate for suppression of fewer than 0.5 mirids/m. Apply high rate if population reaches threshold of 0.5 mirids/m or apply 2 successive low rate sprays not more than 7 days apart.
		1–2% or 1–2 L/100 L of water	Suppression only. Include Canopy in tank-mix when applying any other insecticide by ground rig.
Phorate	200 g/kg G	50 g/100 m row	QLD only. Suppression only. Apply into seed furrow at planting.

Mites INSECTS

Spider mites

Two-spotted spider mite – Tetranychus urticae Bean spider mite – T. ludeni Strawberry spider mite – T. lambi

The two-spotted spider mite is the main pest species, the other two species rarely colonise cotton and seldom cause economic damage. Even in high numbers, *T. lambi* infestations still result in very low levels of damage. Correct identification of the species present is crucial for good decisions.

Damage symptoms

All three species feed on the underside of leaves but the damage symptoms are quite different.

Two-spotted mite – nymphs and adults cause damage that appears as brownish areas on the lower leaf surface, usually starting at the junction of the petiole and leaf blade or in leaf folds. These areas show reddening on the upper surface. If damage is allowed to continue leaves will become completely red and will fall off.

Bean spider mite (this species is red in colour) – damage results in white, intensively stippled areas on the leaf underside, but there is generally no reddening of the upper surface. Severe damage may result in some leaf shedding.

Strawberry spider mite – this species can be very abundant but rarely, if ever, affects yield. Damage is a light, sparse stippling or white dots on the underside of the leaf. There is generally no reddening of the upper leaf surface.

Two spotted mite with egg (mite is 0.5 mm long). (Lewis Wilson, CSIRO)

Sampling

'Sampling protocols for mites in cotton' is presented in full on page 23.

Look for the presence of any mite stages. Eggs and immature stages are difficult to see with the naked eye, so a hand lens should be used. Mites infest the underside of leaves. Sample the oldest leaf when plants are very young. As plants grow, choose leaves that are from 3, 4 or 5 nodes below the plant terminal.

Check which species is present. Two-spotted spider mite is pale green and has 2 distinct dark green spots on either side. Adults of bean spider mite are a dark red colour. Strawberry spider mite is smaller than the other two spider mites. Their bodies are pale green with 3 dark green spots on either side. They cause very little damage.

Frequency

Sample at least weekly. Begin at seedling emergence. Sample more frequently if mite populations begin to increase, or if conditions are hot and dry, or if sprays which eliminate predators are used.

Methods

Presence/absence sampling allows many plants to be sampled quickly, thus increasing the likelihood of finding mites if they are present. It is helpful to plot the development of mite populations on a graph. This allows changes in mite population to be seen at a glance. The detailed sampling protocol for monitoring mite populations is on page 23.

Thresholds

Thresholds and yield loss charts and tools have been developed for two-spotted mites. These probably over-estimate yield loss from bean spider mite. No threshold is required for strawberry mite as it does not appear to reduce yield.

A general threshold of 30% of plants infested is advocated through the bulk of the season (squaring to first open boll). Yield loss due to mites depends on when mite populations begin to increase and how quickly they increase.

Seedling emergence to squaring

Mites are normally suppressed by predators, especially by thrips during this period. Mite populations only need to be controlled if they begin to increase, which indicates that natural controls are not keeping them in check. Use Table 7 on page 24 to determine whether the rate of increase warrants control.

Squaring to first open boll

Control if mite populations increase at greater than 1% of plants infested per day in two consecutive checks, or if more than 30% of plants are infested. Use Table 7 on page 24 for details.

First open bolls to 20% open bolls

Control is only warranted if mites are well established (greater than 60% plants infested) and are increasing rapidly (faster than 3% of plants infested per day). Use Table 7 on page 24 for details.

Crop exceeds 20% open bolls

Control is no longer warranted.

Mite Yield Loss estimator on the web

A simple relationship has been developed which allows prediction of yield loss from mites based on knowledge of the rate of increase in the population and the time remaining until defoliation. Record keeping and calculating can be simplified by using the Mite Yield Loss Estimator in CottASSIST on the web.

INSECTS Mites

Examples of charts generated by this tool are presented on page 25. **Mite population** %. This is the percentage of leaves infested with mites.

Average rate of change. This is an average of the rates of change recorded for successive mite samples. Compared with the rate of change that you would expect if the yield loss from the mite population was 4%. This value (4%) is roughly when yield loss from mites would justify control, based on loss of revenue and cost of control. This may need to be adjusted for your particular situation.

Yield loss %. The yield loss calculation is based on the current percentage of plants infested with mites, the rate of change of the mite population and the number of days remaining in the season depending on the region. In general, zero or negative change in mite populations indicates that something has adversely affected population development such as mite spray, beneficials eating mites, heavy rainfall or a combination of these factors.

Mite yield reduction charts

As an alternative to the web tool, 'look-up' charts have been provided in Table 7, page 24 for areas with different season lengths:

- **Warmer** Bourke, Central Queensland, Macintyre Valley, St George and Walgett
- **Average** Dalby, Gwydir Valley, Lockyer Valley and Lower Namoi Valley
- **Cooler** Boggabri, Breeza, Cecil Plains Pittsworth and Macquarie Valley

The charts use the rate of increase of the mite population. This is calculated by dividing the change in the percentage of plants infested between consecutive checks by the number of days between the checks. For example, if a field had 10% of plants infested a week ago and 24% infested now, this gives a rate of increase of 2% of plants infested per day.

To use the charts

- 1. Select the chart appropriate for your region.
- 2. Go to the section that is closest to the current infestation level of the field i.e. 10%, 30% or 60%.
- 3. Go to the column with the rate of increase closest to that of the mite population in the field.
- 4. Look down this column to the value that corresponds with the current age of the crop.

This value is the predicted yield loss that the mite population is likely to cause if left uncontrolled. It must be stressed that these charts only provide a guide for potential yield losses caused by mites.

You will need to take into account the vigour of the crop, other pests (you may be about to spray with a pyrethroid which may flare mites) and the conditions (that is, mites are generally favoured by hot dry conditions). Differences between the more mite resistant 'okra' leaf varieties and the normal leaf varieties are built into the charts. The effect of beneficials is also built is as high predation will result in lower rates of mite population growth and less risk of yield loss.

Key beneficial insects

Predators – thrips, minute two-spotted ladybird, mite-eating ladybird, damsel bug, big-eyed bug, brown lacewing adults, brown smudge bug, apple dimpling bug, tangleweb spiders.

Selecting a miticide

The miticide products registered for the control of spider mites in cotton in Australia are presented in Table 8 on page 25. Amitraz and endosulfan, used for the control of *Helicoverpa spp*. early in the season will tend to slow, or suppress, the development of mite populations that may also be in the field. Conversely, mite infestations may increase after the application of some broad-spectrum insecticides used for *Helicoverpa* or mirid control, such as synthetic pyrethroids, and organophosphates. This occurs because those sprays kill key beneficial species allowing mite populations to flourish.

Survival strategies

Resistance profile - two-spotted spider mite

WIDESPREAD, HIGH
LEVELS OF RESISTANCE

bifenthrin (SP)
profenofos (OP)

WIDESPREAD, LOW/MOD
LEVELS OF RESISTANCE
chlorfenapyr

OCCASIONAL DETECTION
OF HIGH LEVELS OF
RESISTANCE

OCCASIONAL DETECTION
OF LOW LEVELS OF
RESISTANCE

propargite

Abamectin resistance has occasionally been detected at high levels in two-spotted spider mite in horticulture, but not in cotton. Populations of the bean spider mite and the strawberry spider mite have not been tested for resistance to miticides because they are not often a problem in cotton.

Preventing resistance in two-spotted mites is complicated by the fact that most chemicals used for their control in cotton are also registered for the control of other pests, such as aphids, whitefly or *Helicoverpa*. The bifenthrin and chlorfenapyr resistance that has developed in mites in recent years has occurred largely due to the use of these compounds against other pests.

Overwintering habit

Mites mostly survive the winter in cotton growing areas as active colonies on a wide range of broad-leaf weeds. While the lifecycle slows in cool temperatures, mites are adapted to exploit ephemeral hosts and to produce large numbers of offspring, especially as conditions warm up in spring.

Alternative hosts

Preferred winter weed hosts are turnip weed, marshmallow, deadnettle, medics, wireweed and sowthistle, although they can be found on almost any broad-leafed weed species. Alternative winter and spring host crops include safflower, faba beans and field peas.

Further Information CSIRO Plant Industries, Narrabri Lewis Wilson: (02) 6799 1550 or 0427 991 550 DPI NSW, Camden

Grant Herron: (02) 4640 6471

SAMPLING PROTOCOLS FOR MITES IN COTTON

Population Monitoring

- Walk into the field about 40 m. (Early in the season it is also advisable to sample near the field edges to see if significant influxes of mites have occurred).
- 2. Take a leaf from the first plant on the right or left. The leaf should be from the third, fourth or fifth main-stem node below the terminal. If the plant has less than three leaves, sample the oldest. Note that early in the season, up to the point that the plant has about five true leaves, it is simplest to pull out whole plants.
- 3. Walk five steps and take a leaf from the next plant, on the opposite side to the previous one, and so on until you have 50 leaves. (Wait until you have collected all the leaves before scoring them).
- 4. Once all the leaves have been collected score each leaf by turning it over, looking at the underside, firstly near the stalk, then scanning the rest of the leaf. If mites of any stage (eggs or motiles) are present score the leaf as infested. A hand lens will be needed to see mite eggs because they cannot be seen with the naked eye.
- 5. Repeat this simple procedure at several widely separated places in the field to allow for differences in mite abundance within the field. Depending on the size of the field, 4–6 sites are needed to obtain a good estimate of mite abundance.
- 6. When finished sampling, calculate the percentage of plants infested in the field.

Additional recommendations for monitoring mites in seedling cotton

On seedling cotton (up to 6–8 true leaves) sample regularly to determine the level of infestation using the standard presence/absence technique described above.

When more than 5% of plants are infested it is also advisable to count the numbers of mites on plants, and to score the mite damage level (ie. estimate the % of the plants total leaf area that is damaged by mites).

Continue to monitor mite numbers, damage levels and infestation levels at least weekly, or more frequently if infestation levels are high (> 30% of plants infested).

If the level of infestation, damage level or mite number per plant declines then control is unnecessary, but monitoring should continue.

If mite numbers per plant do not decline after about 6 weeks, if the damage levels exceed an average of 20% of plant leaf area, or if infestation levels increase, then predators are not abundant enough to control mites and a miticide should be applied.

After about 6–8 true leaves, specific mite counts and damage scoring can cease, but continue to use the presence/absence sampling method (points 1–6) until 20% open bolls.

Miticide Resistance Monitoring

- 1. If mites are being collected after a miticide application, ensure sufficient time has lapsed for the miticide to be fully activated. Depending on the product, this may take 7 to 10 days.
- 2. Collect 50 infested leaves per field. Only collect one sample per field. Keep samples from different fields separate. If mite numbers per leaf are very low, consider collecting up to 100 leaves.
- 3. Try to avoid collecting all the leaves from only 2 or 3 plants. Where possible collect infested leaves from different areas across the field.
- 4. Phone Grant Herron and let him know you are sending the sample. Avoid making collections and sending samples on Thursdays or Fridays.
- 5. Ensure samples are clearly labelled and that labels include the following information:

Farm Name
Field
Region (eg. Gwydir)
Collector's Name
Phone No
Fax No
Email address
Date of collection/

Comments eg. details of the problem if a control failure has occurred.

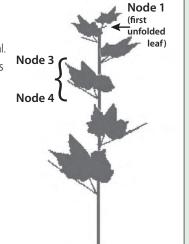
Sending collections to EMAI

Pack the leaves loosely in a paper bag, fold and staple the top. Pack this in a 6-pack esky. Attach the sample details and send by overnight courier to:

Dr Grant Herron DPI NSW,

Elizabeth McArthur Agricultural Institute, Woodbridge Road,

Menangle NSW 2568. Phone: (02) 4640 6471

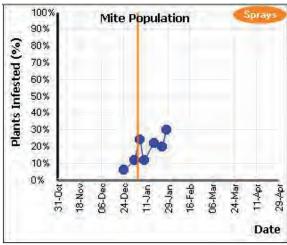

Sampling Tip

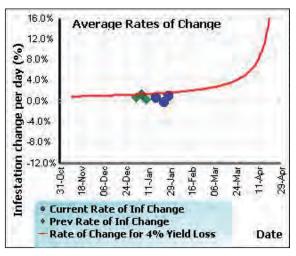
...to save time in the field...

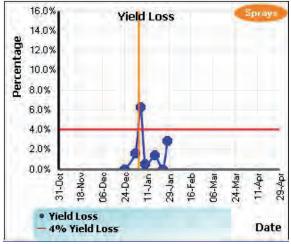
Aphids, mites and whitefly can all be sampled using the same leaves from the 3rd or 4th node below the terminal. Assess for whitefly while collecting the leaves as adults are mobile. Then assess the collected leaves for both mites and aphids.

Collect leaves from several locations in the field.

While the whitefly sampling protocol requires a minimum of 10 leaves per location, aphid and mite sampling requires at least 20 leaves per location. Using 20 leaves will increase the accuracy of whitefly assessment.


INSECTS


THE CHAIL	s below	can be	used t	o estim	ate the	e percer	tage of	yield r	eductio	n cause	ed by m	nites, fo	or differ	ent cott	on gr	owing re	egions.				
										% plan											
Days from	10 30										60										
planting						(%/day				ed rate						Observ					
	0.5	1	1.5	2	3	5	7	0.5	1	1.5	2	3	5	7	0.5	1	1.5	2	3	5	7
Warmer regions; planting to 60% bolls open in 134–154 days. Biloela, Bourke, Emerald, Macintyre, Mungindi, St. George, Theodore and Walgett																					
10	1.1	4.0	8.6	14.9	32.8		100.0	1.8	5.2	17.2	10.3	36.1	94.7		3.1	7.3	13.2	20.8	41.2	100.0	100.
20	1.0	3.5	7.4	12.9	28.2	76.7	100.0	1.6	4.6	9.0	14.9	31.2	81.6	100.0	2.6	5.8	10.3	16.0	31.2	76.7	100.
30	0.9	3.0	6.3	10.9	23.9	65.0	100.0	1.5	4.0	7.8	12.9	26.7	69.6	100.0	2.6	5.8	10.3	16.0	31.2	76.7	100.
40	0.7	2.5	5.3	9.2	20.0	54.3	100.0	1.3	3.5	6.7	10.9	22.6	58.4	100.0	2.4	5.2	9.0	13.9	26.7	65.0	100.
50	0.6	2.1	4.4	7.6	16.5	44.5	86.2	1.1	3.0	5.6	9.2	18.8	48.3	91.5	2.2	4.6	7.8	11.9	22.6	54.3	99.
60	0.5	1.7	3.6	6.1	13.3	35.7	69.1	1.0	2.5	4.7	7.6	15.4	39.1	73.8	2.0	4.0	6.7	10.0	18.8	44.5	
70	0.4	1.4	2.8	4.8	10.4	27.9	53.9	0.9	2.1	3.8	6.1	12.3	30.9	58.0	1.8	3.5	5.6	8.4	15.4	35.7	64.
90	0.3	1.1	2.2	3.7 2.7	7.9	21.0	40.5	0.7	1.7	3.1	4.8	9.5	23.7	44.1	1.6	3.0	4.7	6.8 5.5	12.3	27.9	49. 37.
100	0.3	0.8	1.6 1.1	1.9	5.7 3.9	15.1 10.2	29.1 19.5	0.6	1.4 1.1	2.4	3.7 2.7	7.1 5.1	17.4	32.2 22.1	1.3	2.5	3.8	4.2	9.5 7.1	21.0 15.1	26.2
110	0.2	0.6	0.7	1.9	2.4	6.3	11.9	0.5	0.8	1.3	1.9	3.4	7.7	13.9	1.1	1.7	2.4	3.2	5.1	10.2	17.
120	0.1	0.2	0.4	0.6	1.3	3.3	6.1	0.4	0.6	0.8	1.2	2.0	4.3	7.6	1.0	1.4	1.8	2.3	3.4	6.3	10.
130	0.1	0.1	0.2	0.3	0.5	1.2	2.3	0.3	0.4	0.5	0.6	1.0	1.9	3.2	0.9	1.1	1.3	1.5	2.0	3.3	4.
140	0.0	0.0	0.0	0.1	0.1	0.2	0.3	0.2	0.2	0.3	0.3	0.3	0.5	0.6	0.7	0.8	0.8	0.9	1.0	1.2	1.
						Avera								170 da	ys.						
10	1.5	F 2	11 5	20.0	441	100.0				r, Locky				100.0	2.7	0.0	16.7	26.7	F2.0	100.0	100
10	1.5	5.3	11.5	20.0	44.1	100.0		2.3	6.7	13.5	22.6	47.9		100.0	3.7	9.0	16.7	26.7	53.9	100.0	
20 30	1.3	4.7	10.1 8.8	17.6 15.4	38.8	100.0 92.0	100.0	2.0 1.9	5.3	12.0	20.0 17.6	42.3 37.1		100.0	3.4	8.2 7.4	15.0 13.5	23.9	47.9	100.0	
40	1.0	3.6	7.7	13.4	29.1		100.0	1.7	4.7	9.3	15.4	32.2		100.0	2.9	6.7	12.0	18.8	37.1		100.
50	0.9	3.1	6.5	11.3	24.8		100.0	1.5	4.1	8.0	13.3	27.6		100.0	2.7	6.0	10.6	16.5	32.2		100.
60	0.8	2.6	5.5	9.5	20.8	56.3	100.0	1.3	3.6	6.9	11.3	23.4		100.0	2.5	5.3	9.3	14.3	27.6		100.
70	0.6	2.2	4.6	7.9	17.2	46.4	89.9	1.2	3.1	5.8	9.5	19.5	50.3	95.2	2.3	4.7	8.0	12.3	23.4		100.0
80	0.5	1.8	3.7	6.4	13.9	37.4	72.4	1.0	2.6	4.9	7.9	16.0	40.9	77.2	2.0	4.1	6.9	10.4	19.5	46.4	84.
90	0.4	1.4	3.0	5.1	10.9	29.4	56.8	0.9	2.2	4.0	6.4	12.9	32.5	61.0	1.9	3.6	5.8	8.7	16.0	37.4	67.
100	0.4	1.1	2.3	3.9	8.4	22.3	43.0	8.0	1.8	3.2	5.1	10.0	25.0	46.8	1.7	3.1	4.9	7.1	12.9	29.4	52.6
110	0.3	0.8	1.7	2.9	6.1	16.2	21.2	0.6	1.4	2.5	3.9	7.6	18.6	34.4	1.5	2.6	4.0	5.7	10.0	22.3	39.
120	0.2	0.6	1.2	2.0	4.2	11.1	21.3	0.5	1.1	1.9	2.9	5.5	13.1	23.9	1.3	2.2	3.2	4.5	7.6	16.2	28.2
130 140	0.2	0.4	0.8	0.7	2.7 1.5	7.0	13.3 7.1	0.4	0.8	0.9	1.3	3.7 2.3	8.5 4.9	15.4 8.7	1.2	1.8	2.5 1.9	3.4	5.5 3.7	7.0	18.8
150	0.1	0.3	0.2	0.7	0.6	1.6	2.9	0.4	0.4	0.9	0.7	1.2	2.3	3.9	0.9	1.1	1.4	1.6	2.3	3.8	5.7
160	0.0	0.0	0.1	0.1	0.2	0.3	0.5	0.2	0.3	0.3	0.3	0.4	0.7	1.0	0.8	0.8	0.9	1.0	1.2	1.6	2.0
							oler reg														
40						4.5.5	Boggal														
10	1.7	6.3	13.6	23.7		-	100.0		7.7	15.7	26.5		100.0		4.1	10.2	19.2	30.9		100.0	
20	1.6	5.6 4.9	12.1	21.0	46.4	100.0		2.3	7.0	14.1	23.7	50.3	100.0	100.0	3.8	9.4	17.4 15.7	27.9		100.0	
30 40	1.4	4.9	9.4	18.6 16.2	35.7			1.9	6.3 5.6	12.6	18.6	39.1		100.0	3.5	8.5 7.7	15.7	25.0		100.0	
50	1.1	3.8	8.1	14.1	30.9		100.0	1.9	4.9	9.8	16.2	34.1		100.0	3.0	7.7	12.6	19.8	39.1		100.0
60	0.9	3.3	7.0	12.1	26.5	-	100.0	1.6	4.3	8.5	14.1	29.4		100.0	2.8	6.3	11.1	17.4	34.1		100.0
70	0.8	2.8	5.9	10.2	22.3		100.0	1.4	3.8	7.3	12.1	25.0		100.0	2.6	5.6	9.8	15.1	29.4		100.0
80	0.7	2.3	4.9	8.5	18.6	50.3		1.2	3.3	6.3	10.2	21.0		100.0	2.3	4.9	8.5	13.1	25.0		100.
90	0.6	1.9	4.1	7.0	15.1	40.9	79.1	1.1	2.8	5.3	8.5	17.4	44.5	84.2	2.1	4.3	7.3	11.1	21.0	50.3	
100	0.5	1.6	3.3	5.6	12.1	32.5	62.8	0.9	2.3	4.3	7.0	14.1	35.7	67.3	1.9	3.8	6.3	9.4	17.4	40.9	74
110	0.4	1.2	2.6	4.3	9.4	25.0	48.3	8.0	1.9	3.5	5.6	11.1	27.9	52.2	1.7	3.3	5.3	7.7	14.1	32.5	58.
120	0.3	0.9	1.9	3.3	7.0	18.6	35.7	0.7	1.6	2.8	4.3	8.5	21.0	39.1	1.5	2.8	4.3	6.3	11.1	25.0	44.
130	0.2	0.7	1.4	2.3	4.9	13.1	25.0	0.6	1.2	2.1	3.3	6.3	15.1	27.9	1.4	2.3	3.5	4.9	8.5	18.6	
140	0.2	0.5	0.9	1.6	3.3	8.5	16.2	0.5	0.9	1.6	2.3	4.3	10.2	18.6	1.2	1.9	2.8	3.8	6.3	13.1	22
150	0.1	0.3	0.6	0.9	0.9	2.3	9.4	0.4	0.7	0.7	0.9	2.8 1.6	6.3 3.3	11.1 5.6	0.9	1.6	2.1 1.6	2.8 1.9	2.8	8.5 4.9	14. ²
160			113	UD	119	/ 3	4 3	U.3	0.5	U./	0.9	10	1 1	0.0	0.9	1/	10	1 9	/ X	4 9	



Mites

MITE YIELD LOSS ESTIMATOR CHARTS 100% Mite Population 90% 80%

TABLE 8: Control of mites								
Active ingredient	Concentration and formulation	Application rate of product	Comments					
Mite (Tetrany	chus) species							
Abamectin	18 g/L EC	0.3 L/ha	Best results will be obtained when applied to low mite populations. Do not use more than twice in one season					
Aldicarb	150 g/kg G	3.0–7.0 kg/ha	Apply into the seed furrow at sowing					
Amitraz	200 g/L EC	2.0 L/ha	Suppression when used for controlling Helicoverpa					
Bifenthrin	100 g/L EC 250g/L EC	0.6–0.8 L/ha 0.24–0.32L/ha	Applications against Helicoverpa spp. will give good control of low mite populations.					
Chlorpyrifos	300 g/L EC	1.0–1.5 L/ha	Mix with pyrethroids as a preventative spray to minimise buildup of mite populations.					
		2.5 L/ha	For established mite populations.					
Diafenthiuron	500 g/L SC	0.6 or 0.8 L/ha	Treatment at higher infestation levels may lead to unsatisfactory results.					
Dicofol	240 g/L EC 480 g/L EC	4.0 L/ha 2.0 L/ha	NSW registration only. Apply by ground rig at first appearance of mites before row closure.					
Dimethoate	400 g/L EC	0.5 L/ha	Will not control organophosphate-resistant mites.					
Disulfoton	50 g/kg G	14.0 kg/ha	Apply in a band near seed at planting.					
Emamectin benzoate	17 g/L EC	0.55–0.7 L/ha	When applied for Helicoverpa control will reduce the rate of mite population development. Suppression only.					
Etoxazole	110 g/L SC	0.35 L/ha	Apply by ground rig only. Best results when used on low to increasing populations.					
Methidathion	400 g/L EC	1.4 L/ha	Knockdown and short residual control.					
Phorate	100 g/kg G	6.0 kg/ha	For short residual control.					
		11.0–17.0 kg/ha	For extended period of control. Only use the highest rate on heavy soils when conditions favour good emergence.					
	200 g/kg G	3.0 kg/ha	For short residual control.					
		5.5–8.5 kg/ha	NSW registration only.					
Profenofos	250 g/L EC 500 g/L EC	1.0–2.0 L/ha 0.5–1.0 L/ha	Use low rate to suppress build up. Use high rate if aphids present.					
Propargite	600 g/L EC	2.5 L/ha	Apply as spray before mite infestations reach damaging levels.					

INSECTS Whitefly

Whitefly

Silverleaf whitefly (SLW) or B biotype – Bemisia tabaci

SLW is a major pest due to contamination of cotton lint by honeydew and resistance to many insecticides. Greenhouse whitefly (*Trialeurodes vaporiorum*) and Australian Native whitefly (*Bemisia tabaci*) are present in cotton but not considered pests, as their honeydew secretions do not cause problems for textile processing, and they are both susceptible to many of the insecticides used to control other pests.

Damage symptoms

SLW adults and nymphs cause contamination of lint through their excretion of honeydew. Silverleaf whitefly honeydew is considered to be worse than aphid honeydew because it has a lower melting point and during the processing stage, can cause machinery to gum up and overheat.

Sampling

Sampling what?

Sample for Species and Population.

Species: Verify which whitefly species are present before implementing any management strategies. Species composition may change rapidly during the season due to factors such as insecticide applications and climate. If large increases in population occur, this probably indicates the predominance of SLW. Consider insecticide application history for the crop as a clue to species composition.

Greenhouse whitefly can be visually differentiated from *Bemisia tabaci* by comparing their wing shape in adults and the presence/absence of hairs on the nymphs (see photographs this page).

The different biotypes of *Bemisia tabaci* cannot be distinguished by eye. While other biotypes of *Bemisia tabaci* such as Q-biotype haven't been detected in widespread monitoring of Australian cotton, it is important to continue to check for their presence. A molecular test is needed. This test and the industry's resistance monitoring program are being conducted by entomology staff at DEEDI Qld, Toowoomba.

Collect a minimum of 50 4th instar whitefly from cotton leaves across the whole sampling area (i.e. do not collect nymphs from only 1 or 2 leaves).

Population: Once you have confirmed the presence of SLW, effective sampling is the key to successful management.

Note the gap between wings for SLW (left) compared with overlapping wings for Greenhouse whitefly (right).
(Richard Lloyd, DEEDI Qld)

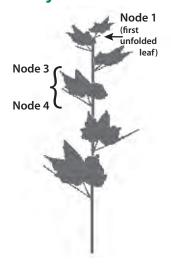
Note absence of hairs on SLW nymph (left) compared to presence on Greenhouse whitefly (right). (Richard Lloyd, DEEDI Qld)

Frequency

Sampling should commence at flowering and occur twice weekly from peak flowering (1300 Day Degrees).

1. Define your management unit

- A management unit can be a whole field or part of a field no larger than 25 ha.
- Each management unit should have a minimum of 2 sampling sites.
- Sample 10 leaves/site (20 leaves/management unit).


2. Choose a plant to sample

- Move at least 10 m into the field before choosing a plant to sample.
- Choose healthy plants at random, avoiding plants disturbed by sweep sampling.
- Take only one leaf from each plant.
- Sample along a diagonal or zigzag line. Move over several rows, taking 5–10 steps before selecting a new plant.

3. Choose a leaf

• From each plant choose a mainstem leaf from either the 3rd, 4th or preferably the 5th node below the terminal of the plant, as shown in the diagram.

Estimate Whitefly Abundance

Adults

Binomial sampling (presence/absence) is highly recommended as it is less prone to bias than averaging the number of whitefly/leaf.

Score leaves with 2 or more whitefly adults as 'infested'. Score leaves with 0 or 1 whitefly adults as 'uninfested'. Calculate the percentage of infested leaves.

Whitefly INSECTS

Nymphs

- Nymph abundance is not used in the Threshold Matrix. Use it as supporting information only.
- The presence of large nymphs on leaves at 6, 7 and 8 nodes below the plant terminal validate the assumptions about SLW population dynamics that underpin the spray thresholds. As leaves are assessed for SLW, they can be picked and used to monitor populations of aphids and mites.

Thresholds

For SLW, there are separate thresholds for early season suppression, the use of IGRs (Insect Growth Regulators) and for knockdown late in the season. Thresholds are based on rates of population increase relative to the accumulation of day degrees and crop development. A Threshold Matrix has been developed to assist in the interpretation of population monitoring data. Frequent population monitoring is essential in order to use the Threshold Matrix effectively (see page 29).

Key beneficial insects

At least 14 species of whitefly parasitoids as well as several species of parasites have also been observed in Australia, including several species of *Encarsia* and *Eretmocerus*. Predators of nymphs – big-eyed bugs, pirate bugs, lacewing larvae, ladybeetles.

Selecting an insecticide

Natural enemies can play a vital role in the successful management of whitefly. Avoid early season use of broad spectrum insecticides, particularly synthetic pyrethroids and organophosphates. Currently there are few products registered

for the control of whitefly in cotton in Australia. The insect growth regulator (IGR) pyriproxyfen, tradename Admiral, is the keystone of effective control of SLW in cotton. It provides excellent control of SLW across a broad range of population densities. It is very selective, allowing survival of most whitefly parasitoids and predators. However there is a very high risk that resistance will develop and lead to control failures in the field. ENSURE ONLY A SINGLE APPLICATION OF ADMIRAL OCCURS WITHIN A SEASON. Twice weekly monitoring from peak flower will ensure that if thresholds are reached, the IGR can be applied at the time when it will be most effective.

Survival strategies

Resistance profile - SLW

WIDESPREAD, HIGH LEVELS OF RESISTANCE

pyrethroids (SP) organophosphates (OP) carbamates

WIDESPREAD, LOW/MOD LEVELS OF RESISTANCE

endosulfan (OC) imidacloprid amitraz Insect Growth Regulators (IGRs)

CROSS RESISTANCE

There is cross-resistance between pyrethroids, most organophosphates, carbamates and some IGRs.

Species verification and resistance monitoring

Sending collections to DEEDI Qld Toowoomba

Pack the leaves in a paper bag and then inside a plastic bag. Pack this in an esky with an ice brick that has been wrapped in newspaper. Send by overnight courier to;

Ensure samples are clearly labelled and include the following information:

Richard Lloyd DEEDI Qld 203 Tor Street, Toowoomba QLD 4350 Phone (07) 4688 1315

Collector's Name	
Phone No.	
Farm Name	
Fax No	
Email address	
Field	
Region (e.g. Gwydir)	
Date of collection//	
Comments	
Comments	

INSECTS Whitefly

Overwintering habit

Whitefly does not have an overwintering diapause stage. It relies on alternative host plants to survive. Generation times are temperature dependent, slowing down during winter months. From Biloela north, the winter generation time is 80 days, while in the Macintyre, Gwydir and Namoi valleys, generation time increases to 120 days.

Alternative hosts

The availability of a continuous source of hosts is the major contributing factor to a severe whitefly problem. Even a small area of a favoured host can maintain a significant whitefly population.

Preferred weed hosts include; sow thistle, melons, bladder ketmia, native rosella, rhynchosia, vines (cow, bell and potato), rattlepod, native jute, burr gerkin and other Cucurbitaceae weeds, Josephine burr, young volunteer sunflowers, Euphorbia weeds, poinsettia and volunteer cotton.

In cotton growing areas the important alternative crop hosts are soybeans, sunflowers and all cucurbit crops. Spring plantings of these crops may provide a haven for SLW populations to build up in and then move into cotton. Autumn plantings of these crops may be affected by large populations moving out of cotton. Do not plant cotton near good SLW host crops such as melons. Destroy crop residue from all susceptible crops immediately after harvest.

Minimising winter hosts, particularly sowthistle, is important in reducing the base population at the start of the cotton season. Smaller base populations will take longer to reach outbreak levels and reduce the likelihood that a particular field will need to be treated.

Further Information DEEDI Qld, Toowoomba Zara Hall: 0459 842 907 Richard Lloyd: (07) 4688 1315

DEEDI Qld, Emerald

Richard Sequeria: (07) 4983 7410 or 0407 059 066

DEEDI Qld, Ayr

Paul Grundy: (07) 4720 5110 or 0427 929 172

NEWWeb tool available now

The Silverleaf Whitefly Threshold Tool uses information from the industry's threshold matrix to select the appropriate threshold based on the SLW population (%), day degrees and crop stage.

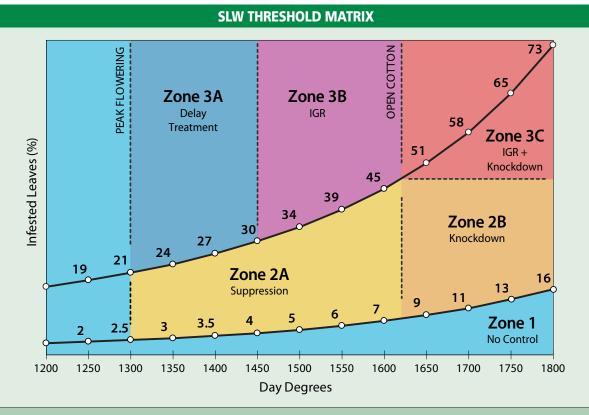

www.cottassist.cottoncrc.org.au

TABLE 9: Cont	TABLE 9: Control of silverleaf whitefly							
Active ingredient	Concentration and formulation	Application rate of product	Comments					
Silverleaf whitefly	Bemisia tabaci B-biot	уре						
Bifenthrin	100 g/L EC 250 g/L EC	0.8 L/ha 0.32 L/ha	The adult stage should be targeted. Do not spray crops with a high population of the juvenile stages. Thorough coverage of the crop canopy is essential. Do not apply more than 2 applications per crop.					
Diafenthiuron	500 g/L SC	0.6 or 0.8 L/ha	Apply when population densities are 10–20% leaves infested. Suppression may not be satisfactory once population densities exceed 25% infestation, or when high numbers of adults are invading from nearby fields.					
Pyriproxyfen	100 g/L EC	0.5 L/ha	Ensure thorough coverage. Apply when industry recommended thresholds are exceeded. If a second spray is required observe a two week retreatment interval. DO NOT apply more than twice in one season.					
Spirotetramat	240g/L SC	0.3–0.4L/ha + Hasten Spray Adjuvant 1.0L/ha	Use the higher rate when periods of high pest pressure or rapid crop growth are evident, and when crops are well advanced. Do not re-apply within 14 days of a previous Spirotetramat spray. Do not apply more than 2 applications per crop. Spirotetramat may not control silverleaf whitefly adults and eggs, however a decline in the total silverleaf whitefly population will occur over time as the juvenile stages are controlled.					

Whitefly

NOTES

NOTES	
Sampling protocol	Sample 20 leaves 3rd, 4th or 5th node below the terminal/25 ha weekly from first flower (777 DD) and twice weekly from peak flowering (1300 DD). Convert to % Infested leaves. Infested leaves are those with 2 or more adults. Uninfested leaves are those with 0 or 1 adult.
Day Degrees	Daily Day Degrees (DD) are calculated using the formula; DD = $[(Max ^{\circ}C - 12) + (Min ^{\circ}C - 12)] \div 2$ For day degree information from your nearest SILO weather station visit www.cottoncrc.org.au For a mid-September planting in Emerald, long term average weather data predicts the duration of Zone 3A is 9 days, Zone 3B is 11 days and Zone 3C is 14 days.
Zone 1 No Control	Insecticide use is not warranted for fields with low SLW densities. In this zone the risk of yield loss or lint contamination is negligible, even when populations are sustained throughout flowering and boll fill.
Zone 2A Suppression	This Zone represents a wide window of opportunity for the most economic and low-risk control of SLW. Conventional (non-IGR) insecticides, such as diafenthiuron (Pegasus), can control or provide useful suppression of low-medium density populations. In early sown crops, endosulfan may be used to control aphids and some other pests through until flowering. When used for these purposes, endosulfan can also suppress the development of low-medium SLW populations. The window for endosulfan application by ground rig closes on the 15 January. Refer to label directions and the IRMS.
Zone 2B Knockdown	Lint contamination can result from uncontrolled medium density populations in crops with open bolls. Early action in Zone 2A can prevent the need for higher-risk remedial action in Zone 2B. Pegasus may be effective for remedial control (knockdown) of population densities up to 45% infested leaves in Zone 2B. (NOTE: The Pegasus label indicates that the product may not give satisfactory control of populations >25% infested leaves. This is based on an overseas sampling model. For Australian conditions this equates to ~45% infested leaves). Efficacy will depend upon coverage and environmental conditions. For higher densities approaching the Zone's upper boundary, an application of IGR may ultimately be required.
Zone 3A Delay Treatment	Controlling high density populations before 1450 DD is not recommended due to the likely resurgence of the population and need for additional control to protect lint from honeydew. Delay control until Zone 3B.
Zone 3B IGR	For optimum efficacy of pryiproxifen, trade name Admiral, target high density populations when the crop is between 1450 and 1650 DD, prior to the onset of boll opening. ENSURE ONLY A SINGLE APPLICATION OF ADMIRAL OCCURS WITHIN A SEASON. Delaying IGR use beyond 50% infested leaves or 1650 DD can result in yield loss, lower efficacy of the IGR and significant lint contamination.
Zone 3C Knockdown + IGR	Once the populations exceeds 50% leaves infested, the use of an IGR by itself is unlikely to prevent lint contamination due to the inherent time delay in population decline following application. Rapid knockdown of the population using a conventional insecticide is required before applying the IGR. The lack of insecticides offering robust knockdown of SLW at high densities make this a 'high risk' zone.

Movento (spirotetramat) is now registered for use in cotton. It is a highly systemic, slow acting compound with a different mode of action to other SLW control options. It targets the nymphal development stage and has little direct activity against adults or eggs. Do not use more than 2 applications per season. Refer to the label for details for use and rates.

Check the APVMA website for other control options that may become available in cotton under permit – www.apvma.gov.au

INSECTS Thrips

Thrips

Tobacco thrips – Thrips tabaci Tomato thrips – Frankliniella schultzei Western flower thrips – F. occidentalis

Damage symptoms

Nymphs and adults cause early season damage to terminals, leaves, buds and stems. While recognised as a pest, thrips are also a key predator of spider-mite eggs.

Sampling

Sample for the number of thrips /plant. Check for the presence of nymphs as well as adults. The presence of nymphs tells if the population is actively breeding. Crops that have had an insecticide seed treatment or in-furrow insecticide treatment may have adult thrips but no nymphs and little plant damage. Sample for the severity of damage to the seedlings. Late season, thrips may reach high numbers in flowers and on cotton leaves, especially in crops where there has been either little or no insecticide use. These thrips help to control mites. Late season thrip damage would rarely justify control.

Frequency

Sample at least weekly.

Begin sampling at seedling emergence and discontinue sampling once the crop has 6 true leaves.

Several thrips species are pests in cotton. They often cause damage to seedling cotton, but in warmer areas the risk of yield loss is about 1 year in 10, while in cooler areas it is about 1 year in 2. (Lewis Wilson, CSIRO)

Methods

Use whole plant visual assessment, with the aid of a hand lens for the observation of nymphs. Check the number of thrips on 20–30 separate plants for every 50 ha of crop.

When assessing leaf damage, a rough guide is, if the average size of a thrips damaged leaf is less than $1~\rm cm^2$, then leaf area reduction is often greater than 80%.

Look for symptoms of tip damage. Tip damage caused by thrips appears as extensive crumpling and blackening of the edges of the small leaves within the terminal. For thrips to cause tip damage, they must be present in high numbers (> 30/plant).

Thresholds

SEEDLING TO 6 TRUE LEAVES

80% reduction in leaf area

10 thrips /plant (adults and nymphs)

Key beneficial insects

Predators – pirate bug, green lacewing larvae, brown lacewing, ladybeetles.

Selecting an insecticide

The insecticide products registered for the control of thrips in cotton in Australia are presented in Table 10, page 31. When deciding whether or not to control thrips with an insecticide, an important consideration is the benefit of thrips to cotton crops as predators of spider mites.

Survival strategies

Resistance profile - Western flower thrip

WIDESPREAD, HIGH WIDESPREAD, LOW/MOD LEVELS OF RESISTANCE LEVELS OF RESISTANCE

pyrethroids (SP)

chlorpyrifos (OP)

OCCASIONAL DETECTION
OF HIGH LEVELS OF
RESISTANCE

OCCASIONAL DETECTION
OF LOW LEVELS OF
RESISTANCE

dimethoate (OP)

No resistance to insecticides has been detected in Australia for tobacco thrips or tomato thrips.

Overwintering habit

Thrips prefer milder temperatures. Populations decline at temperatures greater than 30°C. Thrips are active and common through winter.

Alternative hosts

In spring, large numbers of thrips have been observed on flowers of cereal crops and winter weeds such as Mexican poppy, turnip weed and Paterson's curse. Thrips then transfer to cotton as these hosts dry out or hay off. Cotton crops planted adjacent to cereal crops are particularly at risk of infestation by thrips. In the absence of plant hosts, thrips feed on other sources of protein such as mite eggs.

Further Information

CSIRO Plant Industries, Narrabri

Lewis Wilson: (02) 6799 1550 or 0427 991 550.

TABLE 10: Contr	ol of thrips							
Active ingredient	Concentration and formulation	Application rate of product	Comments					
Thrips (Tobacco thrip	Thrips (Tobacco thrip <i>Thrips tabaci</i> and Tomato thrip Frankliniella schultzei)							
Aldicarb	150 g/kg G	3.0–7.0 kg/ha	Apply into the seed furrow at planting.					
Dimethoate	400 g/L EC	0.35–0.375 L/ha	Apply by ground rig or air. Aircraft may use double track spacing with a reliable cross wind.					
Disulfoton	50 g/kg G	14.0 kg/ha	Apply in band near seed at planting.					
Endosulfan	350 g/L EC	2.1 L/ha	Apply at first sign of infestation. Ensure pesticide application management plan (PAMP) is completed.					
Fipronil	200 g/L SC	0.0625–0.125 L/ha	Regent will take 3–4 days to reach full effectiveness. Use higher rates under high pressure					
Omethoate	800 g/L SL	0.14-0.28 L/ha	Use higher rate for longer residual control					
Phorate	100 g/kg G	6.0 kg/ha	For short residual control.					
		11.0–17.0 kg/ha	For extended period of control. Only use the highest rate on heavy soils when conditions favour good emergence.					
	200 g/kg G	3.0 kg/ha	For short residual control					
		5.5–8.5 kg/ha	NSW registration only.					

Australian plague locust

Chortoicetes terminifera

Very rarely are plague locusts a problem for cotton, but large swarms of plague locusts during autumn can result in significant egg lays. Locusts are able to travel up to 500 km in a night on the winds so can be a threat even if not experienced locally in the previous season. Whilst cotton is not a preferred food source for locust there have been a number of instances in southern NSW where control has been required.

Threat of attack could be from bands of hatchlings for instance in adjacent areas or from swarms that fly in from elsewhere. Locusts can actually mow the cotton plants down and can cause significant damage especially when cotton is at the seedling stage.

Damage symptoms

Severe damage directly attributed to chewing.

Sampling

An important aspect of responding to the threat of locust plagues is surveillance and monitoring. In NSW, land managers have a legal obligation to report the prescence of locusts on their properties to their Livestock Health and Pest Authorities (LPHA). In Queensland, landholders are asked to report the prescence of locusts to Biosecurity Queensland (BQ), although there is no legal requirement. While high numbers will be seen very easily visually, it will pay to inspect the perimeters of fields to detect the occurrence of any banding of emerging locust as early as possible. These state authorities may also implement surveillance and monitoring programs to determine the extent of locust outbreaks in an area and evaluate the success of control methods.

Threshold

Essentially no threshold. Locust can cause significant damage in a short period of time especially if cotton small.

Key beneficials

Birds do eat locusts yet there are no beneficials that could control the numbers present when swarming occurs.

Selecting an insecticide

In selecting control options it is essential to consider the risk of flaring secondary pests. Choosing an appropriate chemical that fits within the IRMS will be a challenge. As an occasional pest, there are few products registered for their control in cotton. Diazinon and chlorpyrifos are registered – check label for rates and further information. At times of high risk permit applications may be made. Contact Cotton Australia for more information. Seedling cotton may require quicker action. In some states free insecticide may be available for locust control in certain circumstances. In NSW, the LPHA coordinate locust control activities. The primary aim of this service is to protect crops and pastures, but the circumstances in which free insecticide may be provided may not be consistent with what is required to protect cotton crops. In NSW, free insecticide will only be provided to LPHA rate payers once locust nymphs have banded. BQ coordinates locust control in Qld, and undertake strategic aerial control of locusts where there is any threat of migration to/within the area where Local Governments make contribution to the Contingency Fund. BQ does not directly protect crops.

Further Information

In NSW – contact your local Livestock Health and Pest Authority. www.lhpa.org.au

In QLD – contact your local Biosecurity Officer 132523 Australian Plague Locust Commission (APLC) www.daff.gov. au/animal-plant-health/locusts

Green Vegetable Bug (GVBs)

Nezara viridula

Damage symptoms

Nymphs and adults cause warty growths and brown staining of lint in developing bolls. Damage symptoms cannot be distinguished from those caused by mirids.

Sampling

Sample for adults and nymphal instars of the pest. GVB instars four and five inflict the same amount of damage as adults. Third instar GVBs cause half the damage of adults, and a cluster (more than 10) of first and second instars cause as much damage as one adult. It is important to correctly identify which instars are present to determine whether or not the population has reached the threshold.

Instar	Instar length (mm)	Description
1	1	Predominately orange
2	2	Black with 1 or 2 white spots
3	4	Mosaic pattern of green, black and red spots
4	7	More green spots, wings begin to develop during late 4th instar
5	10	Spots start to diminish to green, wings well developed
Adult	15	All green with wings

Monitor fruit retention as well as for the presence of the pest.

Frequency

Sample at least weekly.

The crop is most susceptible to damage from flowering through until one open boll/m. Monitor fruit retention and pest presence from the beginning of squaring.

Methods

GVBs are most visible early to mid morning making checking easier at this time. Visual sampling and beat sheets are equally effective checking methods while the crop is squaring. From flowering onwards when the crop is most susceptible to damage, beat sheeting is twice as efficient for detecting GVBs. Although beat sheet sampling is efficient it may tend to give

GVB will use turnip weed as a host in spring. (Lewis Wilson, CSIRO)

a lower population than the actual number in the field. It has been found that the first and second instars tend to hide in the bracts and may be difficult to dislodge.

Even when pests are not observed, cut or squash 14 day old bolls to check for the presence of feeding damage. This will take the form of warty growths and/or brown staining of the developing lint.

Thresholds

Sampling Method	Flowering to First open boll	First open boll to Harvest
Visual	0.5 adults /m	0.5 adults /m
Beat Sheet	1.0 adult/m	1.0 adult /m
Damage to small bolls (14 days old)	20%	20%

Convert nymph numbers to adult equivalents and include in the counts. Fourth or fifth instars are each equivalent to 1.0 adult, each third instar counts as 0.5 adult and clusters of 10+ first/second instars count as 1.0 adult.

Key beneficial insects

Parasites - Trissolcus basalis, Trichopoda giacomellii

Selecting an insecticide

The insecticide products registered for the control of GVBs in cotton in Australia are presented in Table 8. Mid-season use of dimethoate for GVB control could have implications for managing insecticide resistance in aphids.

Survival strategies

Resistance profile

No GVB resistance to insecticides has been detected in Australia.

Overwintering habit

GVB adults enter a dormant phase during late autumn. They overwinter in a variety of sheltered locations such as under bark, in sheds, and under the leaves of unharvested maize crops.

Alternative hosts

In Queensland there are two GVB generations during the warmer part of the year. The preferred weed hosts of the first, spring generation include turnip weed, wild radish and variegated thistle. Early mungbean crops are also a favoured host in spring. The second generation breeds in late summer and early autumn. Pulse crops – particularly soybeans and mungbeans – are key hosts for this generation. GVB populations are usually much lower in mid summer, mainly due to a lack of suitable hosts. In NSW there is a summer/autumn generation, similar to the second generation in Queensland.

Further Information: DEEDI Qld, Toowoomba, Moazzem Khan, (07) 4688 1310 or 0428 600 705

TABLE 11: Control of green vegetable bug			
Active ingredient	Concentration and formulation	Application rate of product	Comments
Green vegetable bug Nezara viridula			
Dimethoate	400 g/L EC	0.34–0.5 L/ha	Apply when pests appear.
Endosulfan	350 g/L EC	2.1 L/ha	Apply at first sign of infestation. Ensure pesticide application management plan (PAMP) is completed.
Fipronil	200 g/L SC	0.0625–0.125 L/ha	Apply when pests appear. Use higher rate when higher infestations are present.
Clothianidin	200 g/L SC	0.125–0.25L/ha + Maxx Organsilicone Surfactant 0.02L/L of water	Use higher rate when heavy infestations is expected and longer control is required. Treated insects may still be on plant 2 or 3 days after application but will have stopped feeding.

The best partner in your cotton field may not be your dog food shop.

Thinking about a rain grown cotton crop this summer?

Growing cotton might be the best contributor to your bottom line this summer. Since the 90's a lot of things have changed, pests are now more manageable, risks are reduced, and yield potential has increased.

But, choosing your input supplier may be the most important decision you make. Cotton Growers Services has been supporting cotton growers for over 30 years with good advice and efficient product supply.

Being cotton specialists, we can help with variety selection, pest or weed control strategies, nutrition and defoliation. So don't look to your dog food supplier for your cotton crop inputs, your crop is too important.

So give us a call or visit your local CGS Branch to get your "Rain grown cotton pack". It contains most of the information you will need to get started, or come back to, the cotton industry!

Contact Cotton Growers Services
to get your essential
information pack.
Head Office phone 02 6795 3100
www.cgs.com.au

INSECTSPale cotton stainers

Pale cotton stainers

Dysdercus sidae

Damage symptoms

Pale cotton stainers are recognized as occasional pests of cotton in Australia. Economic damage is unusual because of their:

- Susceptibility to insecticides used for other pests;
- Inability to survive high temperatures (> 40°C); and,
- Need for free water to be present.

However in mild seasons Bollgard II crops may be a favourable environment for cotton stainers and they may need to be managed.

Pale cotton stainers are able to feed on both developing and mature cotton seed. Seed weight, oil content and seed viability all decline as a result of cotton stainer feeding. Loss of seed viability can be substantial and should be a consideration in pure seed crops.

Pale cotton stainers are able to damage bolls at any age. They will feed on young bolls, up to two weeks old, and severe attacks on these bolls can kill developing seeds leading to boll shedding. Damage to older bolls, from two weeks old onwards usually doesn't cause shedding, but seeds will be damaged, reducing their growth and sometimes lint production. Hence, yield may also be reduced as a secondary effect of feeding. Tightlock can result around damaged seeds, preventing the lint from fluffing out as the boll opens, and damaged locks (boll segments) often appear yellow or stained.

Sampling

Sample for adults and nymphal instars of the pest as both stages can cause similar amounts of damage. Where adults and nymphs are observed feeding, monitor percentage damaged bolls.

Frequency

Sample at least weekly once bolls are present.

Usually cotton becomes infested by adults that fly into fields around the time of first open boll, though sometimes, perhaps due to seasonal conditions populations can be found earlier, during boll maturation. Flights of up to 15 km have been recorded. Adults will mate soon after arrival. The expanding population of developing nymphs will be the cause of economic damage.

Methods

Distribution through the field and through the canopy can be quite patchy, as adult females lay eggs in clusters in the soil or sometimes in open bolls. To avoid under/over estimating abundance ensure sampling occurs at multiple sites spread throughout the field. The beat sheet is a suitable sampling method to monitor the bugs, but as some growth stages favour the lower canopy, visual searching is also a good complementary technique.

Bolls of varying ages should be cut open to confirm and monitor for signs of damage. Studies have shown pale cotton stainer bug cause almost no marking to the boll surface. Warty growths may be found on the inside of the boll wall if young bolls are damaged, but older bolls will not have these. To confirm damage bolls need to be opened and seeds cut and examined for browned, dried damage areas. Some time after damage, usually 7 or more days, the lint may begin to have a more yellow appearance and locks will be stuck to the boll wall – a good indication of pale cotton stainer feeding.

The mild, wet conditions that favour the survival of pale cotton stainers in cotton will also favour the occurrence of secondary infections by yeasts, Alternaria and bacteria in cracked bolls. These infections can cause tightlock and lint staining. The presence of pale cotton stainers when such damage occurs may be coincidental.

Thresholds

Action Threshold during Boll Development:

When adults and nymphs are observed in the crop and damage to developing bolls is detected, an action threshold of 3 pale cotton stainers/m is recommended. This threshold is based on the relationship between cotton stainer damage and the damage caused by other plant bugs. Studies have shown that pale cotton stainer bugs cause only one third as much boll damage as green vegetable bugs. Since the action threshold for green vegetable bug is 1/m, the action threshold for pale cotton stainer bug should be 3/m. Both nymphs (usually 3rd to 5th stage nymphs) and adults cause similar amounts of damage.

Action Threshold after First Open Boll:

When adults and nymphs are observed feeding in open bolls, the threshold must consider the potential for quality downgrades of the lint as well as the loss of seed weight and seed viability. Where staining is observed a threshold of 30% of bolls affected should be used to prevent a colour downgrade.

Key beneficial insects

A range of natural enemies such as Tachinids (parasitic flies) and predatory reduvid bugs (e.g. assassin bugs) have been recorded in Africa. However, they have mainly exerted pressure when cotton stainers have been feeding on native hosts rather than in cropping situations. The role of natural enemies in the control of developing populations of pale cotton stainers in Australia has not been studied.

Adult pale cotton stainers are often seen in maturing cotton, often as mating pairs. They can damage maturing bolls.
(Lewis Wilson, CSIRO)

Selecting an insecticide

As an occasional pest, there are few products registered for their control. The synthetic pyrethroids lambdacyhalothrin (Karate Zeon, Matador) and gamma-cyhalothrin (Trojan) are registered; check the labels of these products for more information. However their status as an occasional pest is influenced by their susceptibility to insecticides used for the control of Helicoverpa and other pests. Cotton stainers may be incidentally controlled when carbamates such as carbaryl or organophosphates such as dimethoate are used.

Survival strategies

Resistance profile

Worldwide there are few records of resistance to insecticides developing in the field, however cotton stainers will react to selection pressure under laboratory conditions. Any decision to use broad spectrum insecticides such as SPs should take into account their impact on beneficial insects and the subsequent risk of flaring whitefly and other secondary pests should also be considered.

Overwintering habit

As there is no resting stage in the cotton stainer's lifecycle, cultural controls between cotton seasons assist greatly in limiting population development (see below).

Alternative hosts

Fuzzy cotton seed used for stockfeed is an important alternative source of food for cotton stainers. Avoid storing fuzzy seed in exposed places where cotton stainers can access this food source over long periods. Controlling ration cotton and cotton volunteers is important for limiting cotton stainer's access to alternative food source.

Further Information DEEDI Qld, Toowoomba

Moazzem Khan: (07) 4688 1310 or 0428 600 705

CSIRO Plant Industry, Narrabri Lewis Wilson: (02) 6799 1550

Solenopsis mealybug

Phenacoccus solenopsis

The solenopsis mealybug (*Phenacoccus solenopsis*) was first identified from cotton crops in the Emerald and the Burdekin regions during the 2009/10 season.

Damage symptoms

Nymphs and adults can affect plant growth at all stages of crop development. Infestations can cause stunting, crinkled and twisted leaves, reduced flower and boll development, and distorted and growth. Heavy and prolonged infestations can lead plant death. Honeydew excreted by the insects onto the leaves and lint can promote the development of black sooty mould.

Sampling

At low densities, mealybugs can be present anywhere on the plant. Crop stress, such as waterlogging, may make cotton more susceptible to mealybug, so it is important to include stressed areas when checking e.g. tail drains. Investigate patches of stunted or dead plants. As solenopsis mealybug has a very wide host range, also monitor surrounding vegetation including gardens.

If mealybugs are found, send samples (as many individuals as possible) to:

Melina Miles or Zara Hall 0459 842 907 DEEDI Qld PO Box 102, Toowoomba 4350

DEEDI Qld will determine if they are *P. solenopsis*, and keep track of the distribution of the species.

Thresholds

There are currently no threshold for control of mealybugs. The impact of mealybug on yield and quality is currently being evaluated

Selecting an insecticide

There are currently no insecticides registered for the control of mealybugs in cotton.

Insecticides are not expected to be the main means of managing solenopsis mealybug in cotton, however a range of products are being evaluated.

There are a number of management options that can reduce the size of infestations, and the overall impact of this pest. A key tactic is to minimise the buildup of mealybug in volunteers, ratoons and weeds, particularly in fallows where cotton will be planted. In Emerald and Burdekin, natural enemies have proven to be very effective at reducing high mealybug populations, and

minimising the build up of populations in crops. Avoiding early season use of broad spectrum insecticides – will help preserve natural enemies that may contribute to the control of mealybug infestations.

Management strategy

Monitor for presence of mealybug along with other pest monitoring. Include areas that are under stress where populations may develop first.

- Monitor abundance of adults, nymphs and natural enemies over time, this will provide a picture of whether the mealybug population is building up, stable or declining.
- Consider release of cryptolaemus and/or lacewings in hotspots.
- •Be mindful of spreading infestations with machinery and passage of people through hotspots.
- If insecticide control is warranted, select the softest option suppression may be sufficient if natural enemies are present.
- Put into practice the industry Come-Clean-Go-Clean protocols to minimise the spread of mealybug.

Key beneficial insects

Predators – Three banded ladybird beetles, lacewings, cryptolaemus, smudge bugs, earwigs and native cockroaches. To date no solenopsis mealybug parasitoids have been recorded in Australia. Parasitoids are reportedly very effective in suppressing populations in India and Pakistan.

Survival strategies

Key factors that contribute to solenopsis mealybug being a pest:

- They have a high reproductive rate. One female can produce hundreds of offspring.
- They shelter in protected positions on the cotton plant; in squares, bracts and under surfaces of leaves. The waxy coating on mealybugs is water repellent, making insecticide contact more difficult.
- They can be spread in the field by wind, surface water runoff, rain splash, birds, people and farm equipment. Mealybugs disperse as first instar 'crawlers'.
- Adults and large nymphs can survive for long periods without a host. DEEDI Qld research found that the crawler stage can live for up to 6 days, and the 3rd instar stage for up to 50 days without food or water.

Over-wintering

Mealybugs can overwinter, but it is unknown to what extent they may overwinter in Australian conditions. However, they have a broad host range and this provides the potential to survive for significant periods on a series of crop and non-crop hosts.

Alternative hosts

The solenopsis mealybug has a wide host range, and in Pakistan it has been recorded on 154 plant species including field crops, vegetables, ornamentals, weeds, and trees. In Emerald and the Burdekin, solenopsis mealybug has been recorded from a range of common weed species on farm such as pigweed, sow thistle, bladder ketmia, native rosella, vines (cow, bell and potato), crownbeard, and volunteer cotton.

Further information DEEDI Qld, Toowoomba Melina Miles 07 4688 1369 Zara Hall 0459 842 907 Moazzem Khan 07 4688 1310

Other pests

TABLE 12: Con	trol of armywo	rm, cutworm	and tipworm
Active ingredient	Concentration and formulation	Application rate of product	Comments
Armyworm (Lessen	r) Spodoptera exigua	1	
Chlorpyrifos	500 g/L EC	0.7 or 0.9 L/ha	When 'army' is moving treat broad strip over and in advance of the infestation. Use higher rate for larvae > 3 cm.
Cutworm Agrotis s	Брр.		
Chlorpyrifos	500 g/L EC	0.9 L/ha	Apply immediately infestation is observed. Apply in a minimum of 100 L of water.
Endosulfan	350 g/L EC	2.1 L/ha	Apply at first sign of infestation. Ensure pesticide application management plan (PAMP) is completed.
Tipworm Crocidose	ema plebejana		
Endosulfan	350 g/L EC	2.1 L/ha	Apply at first sign of infestation. Ensure pesticide application management plan (PAMP) is completed.

Other pests

TABLE 13: Con	trol of wirewor	m	
Active ingredient	Concentration and formulation	Application rate of product	Comments
Wireworm Aprypri	ius variabilis and Fals	e wireworm <i>Ptero</i>	phelaeus spp.
Aldicarb	150 g/kg G	3.0-7.0 kg/ha	Apply into the seed furrow at sowing.
Bifenthrin	100 g/L EC	0.375 L/ha	Apply as spray into the furrow at planting. Use a spray nozzle which will deliver a coarse spray
	250 g/L EC	0.15 L/ha	in a total volume of 60–100 L/ha.
Chlorpyrifos	300 g/L EC, EC/ULV	0.8–2.5 L/ha	Use higher rate with extreme population numbers. Use rates for row spacing of 1 m. Apply as
	500 g/L EC	0.5–1.5 L/ha	band spray at least 10 cm wide into open furrow at sowing. Use minimum spray volume of
			20 L per sown ha.
Phorate	200 g/kg G	3.0 kg/ha	Apply into the seed furrow at sowing.
Azadirachta indica	50g/L	0.8 L/ha	Apply product in the planting furrow to enable see/soil contact. Apply minimum of
			150L water/ha

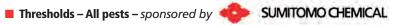

TABLE 14: Conti	ol of cotton lea	fhopper	
Active ingredient	Concentration and formulation	Application rate of product	Comments
Cotton leafhopper (ja	assids) Amrasca terra	ereginae	
Aldicarb	150 g/kg G	3.0–7.0 kg/ha	Planting into moist soil will allow greater and faster uptake. Use higher rate for longer residual control.
Beta-cyfluthrin	25g/L EC	0.06L/ha	Apply at recommended thresholds as indicated by field checks.
Dimethoate	400 g/L EC	0.35–0.375 L/ha	Use the higher rate for heavy infestations. Lower rate in NSW
Endosulfan (jassids only)	350 g/L EC	2.1 L./ha	Apply at first sign of infestation. Ensure pesticide application management plan (PAMP) is completed.
Gamma- cyhalothrin	150 g/L CS	0.05 L/ha	Apply at recommended threshold levels as indicated by field checks.
Lambda-cyhalothrin	250g/L	0.06 L/ha	Apply at recommended thresholds as indicated by field checks
Omethoate	800 g/L SL	0.28 L/ha	Apply by ground or air.
Phorate	100 g/kg G	6.0 kg/ha	For short residual control.
		11.0–17.0 kg/ha	For extended period of control. Only use the highest rate on heavy soils when conditions favour good emergence.
	200 g/kg G	3.0 kg/ha	For short residual control
		5.5–8.5 kg/ha	SW registration only.

TABLE 15: Cont	trol of rough bo	llworm	
Active ingredient	Concentration and	Application rate of	Comments
	formulation	product	
Rough bollworm (E			
(This pest is not norm	nally a problem where	a Helicoverpa species control	program is adopted.)
Alpha-cypermethrin	16 g/L ULV	2.0–2.5 L/ha	It is essential to detect and treat infestations before larvae are established or
	100 g/L EC	0.3–0.4 L/ha	concealed in bolls deep in the canopy. Use high rate for large larvae.
Beta-cyfluthrin	25 g/L EC	0.6 or 0.8 L/ha	Application should be timed to coincide with egg hatching.
Carbaryl	500 g/L SC	2.2 L/ha	Apply when pest appears. DO NOT use on cotton after 25% of bolls have opened.
Cypermethrin	40 g/L ULV	1.9–2.5 L/ha	Rates vary. See product label for specific rates. Use highest rate when canopy is
	200 g/L EC	0.375–0.5 L/ha	dense. Effectiveness is lower for established and concealed infestations.
	250 g/L EC	0.3–0.4 L/ha	
	260 g/L EC	0.29–0.385 L/ha	
Endosulfan	350 g/L EC	2.1 L/ha	Apply at or just prior to egg hatching. Ensure pesticide application management
			plan (PAMP) is completed.
Methoxyfenozide	240 g/L SC	1.7 L/ha or 2.5 L/ha	Apply with recommended adjuvant. Use high rate on rapidly growing crops.
Rynaxypyr	350 g/kg	150 g/ha +non ionic	Target brown eggs or hatchling to 2nd instar larvae before they become entrenched
(chlorantraniliprole)		surfactant @ 125 gai/100 L	in terminals or bolls.

TABLE 16: Cont	rol of pink spott	ed bollworm	
Active ingredient	Concentration and formulation	Application rate of products	Comments
Pink spotted bollwo	rm (Pectinophora scut	tigera)	
Chlorpyrifos	300 g/L EC 500 g/L EC	1.75 L/ha 1.0 L/ha	QLD only. Apply when 10–15 moths are trapped on two consecutive nights to prevent infestation of bolls by larvae.
Deltamethrin	5.5 g/L ULV 27.5 g/L EC	2.5–3.0 L/ha 0.5–0.6 L/ha	QLD only. Apply at first sign of activity before larvae enter boll.
Esfenvalerate	50 g/L EC	0.4 L/ha	Central QLD only. Apply at this rate when pink spotted bollworm is only pest present.
Gamma-cyhalothrin	150 g/L CS	0.06 L/ha	QLD only. If Helicoverpa spp. are not present apply when more than 10 adults moths are caught in pheromone traps on 2 consecutive nights.
Lambda-cyhalothrin	250 g/L ME	0.07 L/ha	As above

Insect pest	Planting to flowering	Flowering to 1 open boll/m	•	boll/m arvest	Comments	
	(1 flower/m)		Up to After 15% open		_	
Helicoverpa spp. in conven	tional cotton					
White eggs/m	_	-	-	_		
Brown eggs/m	_	5	5	5		
Total larvae/m	2	2	3	5	Egg thresholds	
Medium and large larvae/m	1	1	1	2	- egg thresholds - No egg threshold during pre-flowering due to high natural mortality	
Helicoverpa Tip damage (% of plants affected)	100–200% (100% of plants tipped once or twice)	-	cease at 30	– control can –40% bolls en.	Larval thresholds Research on increasing the end of season thresholds has been carrie out, and suggests that the threshold after 15% open can be raised to 5 total larvae/metre or 2 medium+large larvae /m. This research	
Helicoverpa spp. in Bollgar	d II cotton				however, is preliminary and requires further analysis.	
		All seaso	n		The Helicoverpa development model in CottonLOGIC can be used to	
White eggs/m		-			estimate the development of a given egg and larval population over the next three days, taking into account estimated natural mortality	
Brown eggs/m		-			- levels for the time of season.	
Total larvae/m (excluding larvae < 3 mm)	2/	m over 2 consect	utive checks		_	
Medium and large larvae/m		1/m on the firs	t check			
Green mirids						
Adults and nymphs/m					_	
cool region – visual	0.7	0.5		_		
warm region – visual	1.3	1.0		_	The relative importance of the % fruit retention and % boll damage	
cool region – beatsheet	2	1.5		_	reverses as the season progresses. From the start of squaring throug until cut-out, place the emphasis on fruit retention. Not all bolls that	
warm region – beatsheet	4	3	-	_	- are damaged by mirids will be shed, so after cut-out it is important	
Fruit retention	< 65%	< 65%	-	_	to monitor bolls for mirid damage.	
Boll damage		20%	20)%	If only the terminal is blackened, damage could be considered light.	
Tip damage (% of plants affected) (heavy) (light)	20% 50%	- -	- -	_ _	If the terminal plus one or more true leaves are blackened, damage could be considered heavy.	
Cotton aphid (check species	5)					
Presence of adults and nymphs Honeydew presence	Calculate Cumulative Season Aphid Score*	Calculate Cumulative Season Aphid Score monitor for	infest	0% tation	Until 1% of the bolls are open calculate the Cumulative Season Aphid Score to determine the threshold. * When using this Score in very young cotton, yield loss predictions should be treated with caution as in many cases aphid populations will naturally decline. Once open bolls are present in the crop, use 50% infestation. When	
		the presence of honeydew	honeyde	w present	1% of bolls are open and honeydew is present, the aphid threshold is reduced to 10% infestation. Check field borders and spray them separately where necessary. Some cotton aphid strains are resistant to organophosphates and carbamates. Aphids can carry and transmit cotton bunchy top virus. Monitor plants in aphid hotspots for symptoms of this disease, such as mottling of leaf margins.	
Green peach aphid						
% of plants infested	25%				May be a problem early season, populations normally decline in hot weather. Some populations are resistant to organophosphates and carbamates.	

Insect pest	Planting to flowering	Flowering to 1 open boll/m	1 open boll/m to harvest	Comments	
	(1 flower/m)		Up to After 15% open 15% open		
Mites					
% of leaves infested	30% Normally suppressed by predators. Use the table on page 21.	30% or population increases at > 1% of infested plants/day in 2 consecutive checks	> 60% No effect on yield after 20% bolls open.	A nominal threshold of 30% of leaves infested is used from seedling emergence up to 20% of bolls open. Alternatively, use the table on page 24 to base thresholds on potential yield loss. Yield loss is estimated using time of infestation and rate of population increase.	
Thrips					
Adults and nymphs/plant	10	_	_	Control is justified if there are 10 thrips/plant plus the reduction in	
Damage (reduction in leaf area)	80%	-	-	leaf area due to thrips is greater than 80% (roughly leaves less than 1 cm long). Control is also justified if there is a reduction in leaf area of more than 50% once the plant has reached the six true leaf stage. Thereafter, thrips are unlikely to affect the yield or maturity date of cotton crops. If conditions were cool or the plant had another set-back then the thresholds could be reduced.	
Green vegetable bug					
Visual	-	0.5	0.5	Green vegetable bug cause significantly more damage to bolls less	
Beat sheet, OR	_	1	1	than 21 days old and prefer bolls 10 days old or less. Older bolls are	
Damage to small bolls (14 day old)	-	20%	20%	generally not preferred. Instars 4, 5 and adults do the same amount of damage. Instar 3 does half the damage of instar 4 and 5 and adults. A cluster (more than 10) of first and second instars does as much damage as one adult. Thresholds are in adult equivalents.	
Pale cotton stainers					
Visual	_	1.5	1.5	Threshold is based on relationship between cotton stainer damage	
Beat sheet		3	3	and damage caused by other plant bugs. Both nymphs (usually 3rd	
Damaged bolls (%)		30%	30%	to 5th stage nymphs) and adults cause similar amounts of damage.	
Cotton leafhopper					
Jassids/m	50	_	_		
Tipworm					
Larvae/m	1–2	_	_		
Tip damage (% of plants affected) (not entrenched) (entrenched)	100–200% 50–100%	- -	-	Sample for tipworm up until first flower. Larvae tend to burrow into the terminals and squares so may not be found using the beat sheet or sweep nets. Visual sampling methods are the most accurate. Bollgard II cotton provides good control of tipworm.	
Armyworm					
Large larvae/m	1				
Small larvae/m	2	-			
Rough bollworm					
Larvae/m	2	3	3	Susceptibility to rough bollworm starts when there are more than 5	
Damaged bolls (%)	-	3%	3%	bolls/m over 2 weeks old. Susceptibility ceases when there are fewer than 5 growing bolls/m less than 2 weeks old. Bollgard II cotton provides good control of rough bollworm.	
Pink spotted bollworm					
% bolls infested	-	5	5	The threshold for pink spotted bollworm is based on the infestation as determined by examining inner boll walls. Bollgard II cotton provides good control of pink spotted bollworm.	
Loopers					
Larvae/m		20	50		

				chemicals as at May 15, 201	
Active ingredient	Chemical group	Insecticide group	Concentration and formulation	Trade name	Marketed by
Abamectin	avermectin	6	18 g/L EC	ABA 18	Genfarm
			18 g/L EC	Abacin 18	Farmalinx
			18 g/L EC	Abachem	ChemAg
			18 g/L EC	Abamect	Nufarm
			18 g/L EC	Abamectin	eChem
			18 g/L EC	Abamectin	Accensi
			18 g/L EC	Abamectin	4Farmers
			18 g/L EC	Abamectin	Chemtura
			18 g/L EC	Abamectin	Rainbow
			18 g/L EC	Abamectin	Titan AG
			18 g/L EC	Acarmik	Rotam Limited
			18 g/L EC	Agrimec	Syngenta
			18 g/L EC	Biomectin	Jurox
			18 g/L EC	Gremlin	Sipcam
			18 g/L EC	Kill-a-mite	Sevroc
			18 g/L EC	Mite Terminator	Rosmin
			18 g/L EC	Romectin	Rotam Australasia
			18 g/L EC	Stealth	PCT Holdings
			18 g/L EC	Vantal 18 EW	Ospray
			18 g/L EC	Wizard 18	Farmoz
Acetamiprid	neonicitinoids	4A	225 g/L SL	Intruder	Agnova
Aldicarb	carbamate	1A	150 g/kg G	Temik 150G	Bayer CropScience
Alpha-cypermethrin	pyrethroid	3A	16 g/L ULV	Alpha-Scud ULV	Farmoz
прпа-суреннешни	ругентош	JA.	16 g/L ULV	Dictate ULV	ChemAg
			16 g/L ULV/EC	Fastac ULV	Nufarm
			16 g/L ULV	Dominex 16 ULV	FMC Australasia
			16 g/L ULV	Alpha-cyp ULV	eChem
			100 g/L EC	Alpha-Cyp 100 DUO	eChem
			100 g/L EC 100 g/L EC		Tradelands
				Alpha-cyper	Farmalinx
			100 g/L EC	Alphacyper	ARM
			100 g/L EC	Alpha-cypermethrin	
			100 g/L EC	Alpha-cypermethrin	Masmart 4Farmers
			100 g/L EC	Alpha-Cypermethrin 100	
			100 g/L EC	Alpha-Cypermethrin 100	Accensi
			100 g/L EC	Alpha-Cypermethrin 100	Chemforce
			100 g/L EC	Alpha-Cypermethrin 100	Halley
			100 g/L EC	Alpha-Cypermethrin 100	Ospray
			100 g/L EC	Alpha Duo 100	Conquest
			100 g/L EC	Alpha-Duo 100	Titan AG
			100 g/L EC	Alpha Duo	Genfarm
			100 g/L EC	Alpha Duop 100	Grow Choice
			100 g/L EC	Alpha-Scud Elite	Farmoz
			100 g/L EC	Alphasip Duo	Sipcam
			100 g/L EC	Antares 100	Campbell
			100 g/L EC	Astound Duo	Nufarm
			100 g/L EC	AW ALF 100	AgriWest
			100 g/L EC	Biotis Alpha 100	Biotis Life Science
			100 g/L EC	Buzzard	PCT International
			100 g/L EC	Centaur 100	Genfarm
			100 g/L EC	Dictate 100	ChemAg
			100 g/L EC	Dictate Duo 100	ChemAg
			100 g/L EC	Dominex Duo	Crop Care
			100 g/L EC	Dominex Duo	FMC
			100 g/L EC	Fastac Xcel	BASF
			100 g/L EC	G. valley Alpha-Cypermethrin 100	Grassvalley forrmulati
			100 g/L EC	Fastac Duo	Nufarm
			100 g/L EC	Innova Alpha 100	Syngenta
			100 g/L EC	Ken-Tac 100	Kenso AgCare
			100 g/L EC	Unialphacyper	United Farmers Co-op
			100 g/L EC	Unitox 100	United Phosphorus
mitraz	triazapentadiene	19	200 g/L EC	Amitraz 200 EC/ULV	ChemAg
armu az	пагарентаціене	19	200 g/L EC 200 g/L EC	Amitraz 200 EC/ULV	Jurox
			200 g/L EC 200 g/L EC	Amitraz EC/ULV	eChem
			/UU (I/I F(Amitraz Elite EC/ULV	Farmoz

REAL PROBLEMS REQUIRE RELIABLE SOLUTIONS

Admiral

The proven whitefly standard

For more information, visit: www.sumitomo-chem.com.au

SUMITOMO CHEMICAL

Admiral® is a registered trademark of Sumitomo Chemical Co. Ltd.

				hemicals as at May 15,	
Active ingredient	Chemical group	Insecticide group	Concentration and formulation	Trade name	Marketed by
Amitraz	triazapentadiene	19	2200 g/L EC	Amitraz Duo	Genfarm Crop Protection
			200 g/L EC	Hitraz 200 EC/ULV	Rotam
			200 g/L EC	Mitra 200 EC/ULV	United Phosphorus
			200 g/L EC	Opal Duo	Nufarm
			200 g/L EC	Ovasyn Options	Arysta Lifescience
Amorphous silica	not a member of any		450 g/L SC	Abrade Abrasive Barrier	Grow Choice
Bacillus thuringiensis	chemical group Bt microbials	11	Btk* HD1** SC	Dipel SC	Valent BioSciences,
J				Costar	Sumitomo Chemicals Syngenta
				Agree	Certis
				BioCrystal kurkatis	Grevillia Ag
	cies KURSTAKI. ** Strain type.				
Betacyfluthrin	pyrethroid	3A	25 g/L EC	Bulldock Duo	Bayer CropScience
Bifenthrin	pyrethroid	3A	100 g/L EC	Akostar	Aako
			100 g/L EC	Agfen 100 EC	Agriwest
			100 g/L EC	Arrow 100 EC	Conquest
			100 g/L EC	Bifen 100	ChemAg
			100 g/L EC	BiFendoff 100	Grow Choice
			100 g/L EC	Bifenthrin	4 Farmers
			100 g/L EC	Bifenthrin	Titan AG
			100 g/L EC	Bifenthrin 100	Genfarm
			100 g/L EC	Bifenthrin 100	Imtrade
			100 g/L EC	Bifenthrin 100	Unite d Farmers Co-op
			100 g/L EC	Bifenthrin 100 EC	Accensi
			100 g/L EC	Bifenthrin 100 EC	Ospray
			100 g/L EC	Bifentin	Farmalinx
			100 g/L EC	Compel	Ecofertiliser
			100 g/L EC	Disect 100 EC	UPL
			100 g/L EC	Fernstar 100 EC	Biotis Life Science
			100 g/L EC	Innova Bifenthrin100 EC	Syngenta
			100 g/L EC	Out of Bounds	Barmac
			100 g/L EC	Sarritor	Nuchem
			100 g/L EC	Tal-Ken 100	Kenso Agcare
			100 g/L EC	Talstar 100 EC	Crop Care
			100 g/L EC	Venom 100	Farmoz
			100 g/L EC	Webzone	Webcot
			250 g/L EC	Bifenthrin 250EC	Enviromax
			250 g/L EC	Talstar 250 EC	Crop Care
Carbaryl	carbamate	1A	500 g/L SC	Bugmaster Flowable	Bayer CropScience
Chlorpyrifos	organophosphate	1B	300 g/L ULV/EC	Cyren 300	Ospray
			300 g/L EC	Instinct 300	Farmoz
			300 g/L EC	DuoProwler 300	AgCare
			500 g/L EC	AW Chop 500	AgriWest
			500 g/L EC	Chemicide 500	Hextar
			500 g/L EC	Chlorpos	Farmalinx
			500 g/L EC	Chlorpyrifos 500	4Farmers
			500 g/L EC	Chlorpyrifos 500	Agchem
			500 g/L EC	Chlorpyrifos 500	Accensi
			500 g/L EC	Chlorpyrifos 500	Agspray
			500 g/L EC 500 g/L EC	Chlorpyrifos 500	Chemforce
			500 g/L EC	Chlorpyrifos 500	Conquest
			500 g/L EC	Chlorpyrifos 500	David Grays
			500 g/L EC	Chlorpyrifos 500	Genfarm
			500 g/L EC	Chlorpyrifos 500	Halley
			500 g/L EC	Chlorpyrifos 500	Imtrade
			500 g/L EC	Chlorpyrifos 500	Rainbow
			500 g/L EC	Chlorpyrifos 500	Sabero
			500 g/L EC	Chlorpyrifos 500	Titan AG
			500 g/L EC	Chlorpyrifos 500	United Farmers Co-op
			500 g/L EC	Chlorpyrifos 500 EC	Nufarm
			500 g/L EC 500 g/L EC	Chlorpyrifos 500 EC	WSD
			500 g/L EC	Cyren 500	Ospray
			500 g/L EC	Fortune 500	PCT International

Active ingredient	Chemical group	Insecticido	Concentration and	hemicals as at May 15, 2 Trade name	Marketed by
Active ingredient	Chemical group	group	formulation	rraue riaine	Marketed by
Chlorpyrifos	organophosphate	1B	500 g/L EC	Generifos	Grow Choice
	or garropriospriate		500 g/L EC	Kensban 500	Kenso Corporation
			500 g/L EC	Lorsban 500	Dow AgroSciences
			500 g/L EC 500 g/L EC	Pidgeons Pest Controller	
					Superway
-1.1 16 .1.1			500 g/L EC	Strike-out 500 EC	Farmoz
Chlorpyrifos-methyl	organophosphate	1B	500 g/L EC	Diplomat	ChemAg
Ilothianidin	neo-nicotinoids	4A	200 g/L SC	Shield	Sumitomo Chemicals
Typermethrin	pyrethroid	3A	40 g/L ULV	Arrivo 40ULV	FMC
71.	1-7		40 g/L ULV	Cypershield ULV 40	Chem Ag
			40 g/L ULV	Cyrux 40ULV	United Phosphorus
			200 g/L ULV	ULV Boom 200	Genfarm
			200 g/L EC	Cypermethrin 200	Halley
					•
			200 g/L EC	Cypermethrin 200	Titan AG
			200 g/L EC	Cypermethrin 200 EC	WSD
			200 g/L EC	Cypermethrin 200 EC	United Farmers Co-op
			200 g/L EC	Cypershield 200	Chem Ag
			200 g/L EC	Cyptrin 200 EC	Farmalinx
			200 g/L EC	Cyrux 200EC	United Phosphorus
			200 g/L EC	Ken-Cyper 200	Kenso AgCare
			200 g/L EC	Scud Elite	Farmoz
			200 g/L EC	Sonic 200 EC	Nufarm
			250 g/L EC	Arrivo 250EC	FMC
			250 g/L EC	Cyper 250 Plus	Genfarm
			250 g/L EC	Cypermethrin 250	Conquest
			250 g/L EC	Cypermethrin 250 EC	Accensi
			250 g/L EC	Cypermethrin 250 EC	Echem
				Cyrux 250 EC	United Phosphorus
			250 g/L EC		
			260 g/L EC	Cypermethrin 260 EC	AgriWest
			260 g/L EC	Cypermethrin 260 EC	4Farmers
)eltamethrin	pyrethroid	3A	5.5 g/L ULV	Deltaguard ULV	PCT International
			5.5 g/L ULV	Deltamethrin ULV	Echem
			5.5 g/L ULV	Deltashield 5.5	ChemAg
			27.5 g/L EC	Akodelthrin	Aako
			27.5 g/L EC	Ballistic Elite	Farmoz
			•		
			27.5 g/L EC	D-Sect	PCT International
			27.5 g/L EC	Decis Options	Bayer CropScience
			27.5 g/L EC	Delta Duo	ChemAg
			27.5 g/L EC	Deltamethrin Duo	Echem
			27.5 g/L EC	Deltamethrin Duo	Halley
			27.5 g/L EC	Deltashield 27.5	ChemAg
			27.5 g/L EC	Dicast	Sinon
Piafenthiuron	organotonin miticidos	12B	500 g/L SC		
	organotonin miticides			Pegasus	Syngenta
Picofol	organochlorine	2B	240 g/L EC	Miti-Fol EC	Farmoz
			480 g/L EC	Kelthane MF	Cropcare
imethoate	organophosphate	1B	400 g/L EC	Danadim	Ospray
	3 /		400 g/L EC	Dimethoate	ChemAg
			400 g/L EC	Dimethoate	Nufarm
			400 g/L EC 400 g/L EC	Dimethoate 400	AgriWest
					3
			400 g/L EC	Dimethoate 400	Accensi
			400 g/L EC	Dimethoate 400	4Farmers
			400 g/L EC	Dimethoate 400	Conquest
			400 g/L EC	Dimethoate 400	Farmoz
			400 g/L EC	Dimethoate 400	Halley
			400 g/L EC	Dimethoate 400	Gemax
			400 g/L EC	Dimethoate 400	
					Superway
			400 g/L EC	Dimethoate 400	Titan AG
			400 g/L EC	Dimetholinx	Farmalinx
			400 g/L EC	Rogor	Sipcam
			400 g/L EC	Rover	Sipcam
			400 g/L EC	Saboteur	Crop Care
				Stalk	
			400 g/L EC		PCT Holdings
			400 g/L EC	Unidime 400	United Farmers Co-op
isulfoton	organophosphate	1B	50 g/kg G	Disulfoton 50	David Grays
isanoton					

Active ingredient	Chemical group	Insecticide	Concentration and	Trade name	Marketed by
	G. G	group	formulation		
Endosulfan	organochlorine	2A	350 g/L EC	Endosan	Crop Care
	3		350 g/L EC	Endosulfan 350 EC	Farmoz
			350 g/L EC	Endosulfan 350 EC	Nufarm
			350 g/L EC	Thiodan EC	Bayer CropScience
Esfenvalerate	pyrethroid	3A	50 g/L EC	Sumi-Alpha Flex	Sumitomo Chemicals
Ethion + zeta-	organophosphate +	1B + 3A	360 g/L + 20 g/L EC	Mustang	Crop Care, FMC
cypermethrin	pyrethroid		9		5. 5p - 55,
Etoxazole	10B		110 g/L SC	ParaMite	Sumitomo Chemicals
ipronil	phenyl pyrazole	2B	200 g/L SC	Flak	AgriWest
•	. , , , ,		200 g/L SC	Kaiser	Campbell
			200 g/L SC	Legion	Crop Care
			200 g/L SC	Regent	Nufarm
			200 g/L SC	Surefire Vista	PCT
Gamma -cyhalothrin	pyrethroid	3A	150 g/L CS	Trojan	Dow AgroSciences
	p)			Trojan	Ospray
Helicoverpa NPV	nuclear polyhedrosis virus		2 x 109 PIB/mL *LC	Vivus	Ag Biotech
Tielleoverpa Wi	, , , , , , , , , , , , , , , , , , ,		5 x 109 PIB/mL **LC	Vivus Max	Ag Biotech
			2 x 109 PIB/mL ***LC	Vivus Gold	Ag Biotech
			2000 MObs/mL	Gemstar	Bayer
			2x10*5 MLObs	Heliocide	Agrichem
Imidacloprid	neonicitinoids	4A	200 g/L AC	Annihilate	ChemAg
ппиасторни	HEOHICIANIONS	44	200 g/L SC	Confederate	ChemAg Hextar
			200 g/L SC	Confidor 200 SC	Bayer CropScience
			200 g/L SC	Couraze 200 SC	Ospray
			200 g/L SC	IMI 200	Farmalinx
			200 g/L SC	Imi-flow	Masmart
			200 g/L SC	Imidaclporid- 200	4Farmers
			200 g/L SC	Imidaclporid- 200	Farmalinx
			200 g/L SC	Imidaclporid- 200	Pacific
			200 g/L SC	Imidacloprid 200 SC	Genfarm
			200 g/L SC	Kohinor 200	Farmoz
			200 g/L SC	Nuprid 200SC	Nufarm
			200 g/L SC	Provado	Bayer
			200 g/L SC	Savage 200	Kenso
			200 g/L SC	Senator 200 SC	Agcare Crop Care
			200 g/L SC	Surefire Spectrum 200SC	PCT Holdings
ndoxacarb	oxadiazine	22A	150 g/L EC	Steward	Dupont
.ambda -cyhalothrin	pyrethroid	3A	250 g/L CS	Flipper 250 CS	Sherwood
			250 g/L ME	Karate Zeon	Syngenta
			250 g/L ME	Kung Fu 250	ChemAg
			250 g/L ME	Matador Zeon	Crop Care
Methidathion	organophosphate	1B	400 g/L EC	Ridacide	Aako
			400 g/L EC	Supracide 400	Syngenta
			400 g/L EC	Suprathion 400 EC	Farmoz
Methomyl	carbamate	1A	225 g/L EC	Electra 225	Farmoz
			225 g/L AC	Lannate L	Pinhead
			225 g/L AC	Marlin	Dupont
			225 g/L LC	Methomyl 225	Ospray
			225 g/L LC	Nudrin 225	Crop Care
			225 g/L SC	Sinmas	Sinon Australia
			225 g/L SL	Seneca	Ronic International
Methoxyfenozide	diacylhydrazines	18	240 g/L SC	Prodigy	Dow AgroSciences
methoate	organophosphate	1B	800 g/L SL	Folimat 800	Ayrsta Lifescience
			800 g/L SL	Sentinel 800	ChemAg
araffinic oil	petroleum spray oil (PSO)		792 g/L EC	Canopy	Caltex
			815 g/L EC	Biopest	Sacao
arathion	organophosphate	1B	500 g/L EC	Parathion-Methyl 500	Farmoz
methyl	J		500 g/L EC	Parashoot 500 EC	Ospray
			J = -		I · · - · J

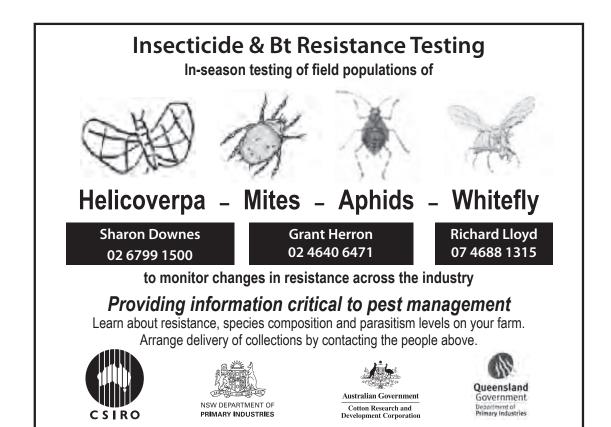
Active ingredient	Chemical group	Insecticide	Concentration and	Trade name	Marketed by
		group	formulation		
Phorate	organophosphate	1B	100 g/kg G	Thimet 100	Barmac
			100 g/kg G	Umet 100G	UPL
			200 g/kg G	Thiamet 200G	Barmac
			200 g/kg G	Umet 200G	UPL
			200 g/kg G	Zeemet 200G	UPL
Piperonyl butoxide	synergist	synergist	800 g/L EC	Enervate	Nufarm
			800 g/L EC	PBO 800 EC	Agspray
			800 g/L EC	Piperonyl Butoxide –	Farmoz
			800 g/L EC	Puppet	Imtrade
			800 g/L EC	Summit PBO Synergist –	Sipcam
			800 g/L EC	Synergy	Cro p Care
Pirimicarb	carbamate	1A	500 g/kg WDG	Aphidex WG	Farmoz
			500 g/kg WDG	Atlas WDG	Titan AG
			500 g/kg WDG	Pirimor WG	Syngenta
			500 g/kg WDG	Pirimicarb 500	Ospray
			500 g/kg WDG	Pirimicarb 500 WG	Imtrade
			500 g/kg WDG	Pirimicarb 500 WG	Genfarm
			500 g/kg WP	Pirimicard 500 WP	4Farmers
			500 g/kg WDG	Piricarb WG	Farmalinx
Profenofos	organophosphate	1B	500 g/L EC/ULV	Curacron 500 Pro –	Syngenta
			500 g/L EC/ULV	Grizzly 500 –	Nufarm
			250 g/L EC/ULV	Prochem Duo 250	ChemAg
			500 g/L EC/ULV	Prochem Elite 500	Imtrade
Propargite	propargite	12C	300 g/kg WG	Betamite	Crop Care
			300 g/L WG	Omite	Chemtura Aust.
			600 g/L EC	Bullet	Crop Care
			600 g/L EC	Comite	Chemtura Australia
			600 g/L EC	Dyna-Mite 600	Farmoz
			600 g/L EC	Mitigate	United Phosphorous
			600 g/L EC	Treble	Nufarm
Pymetrozine	pymetrozine	9B	500 g/kg WDG	Fulfill	Syngenta
Pyriproxyfen	pyriproxyfen	7C	100 g/L EC	Admiral	Sumitomo
Rynaxypyr	diamides	28	350 g/kg	Altacor	Dupont
(chlorantraniliprole)					
Spinosad	spinosyn	5	800 g/L WP	Entrust	Dow AgroSciences
Spirotetramat	spirotetramat	23	240 g/L SC	Movento	Bayer Cropscience
Thiodicarb	carbamate	1A	375 g/L SC	Larvin 375	Bayer CropScience
			375 g/L SC	Showdown 375	Farmoz
			800 g/kg WDG	Confront 800 WG	Imtrade
			800 g/kg WDG	Larvin 800 WG	Payor Cronsciones
			ouu g/kg vvDa	Larviii 600 VVG	Bayer CropScience

^{*}contains 2 x 109polyhedral occlusion bodies of the NPV of Helicoverpa armigera

**contains 5 x 109polyhedral occlusion bodies of the NPV of Helicoverpa armigera

***contains 2 x 109polyhedral occlusion bodies of the NPV of Helicoverpa armigera with a minimum of 50% native isolate and 50% vivus isolate

TABLE 19: Insecticide seed treatment trade names and marketers – Registered chemicals as at July 1, 2011					
Active ingredient	Chemical group	Insecticide group	Concentration and formulation	Trade name	Marketed by
Imidaclantid*	4.0	Neo-nicotinoids 600 g/L FS	Gaucho	Bayer	
Imidacloprid* 4A	4A		600 g/L F3	Genero	eChem
Imidacloprid + Thiodicarb	4A/1A	Neo-nicotinoids/Carbamates	350 + 250 g/L FS	Amparo	Bayer
Thiamethoxam —	4A	Neo-nicotinoids	350 g/L FS	Cruiser 350 FS	Syngenta
	4A	Neo-nicotinoids	600 g/L FS	Cruiser Extreme 600 FS	Syngenta
*There are multiple other registrations for Imidacloprid, however these are currently not commercially available through CSD.					


Use of beneficial insect attractants (food sprays) and spray additives

The application of food sprays in cotton crops enables beneficial insects (particularly predators) to be attracted retained and conserved in the crop. Food sprays cannot manage cotton pests alone but combined with other IPM compatible tools they can help manage cotton pests and minimise synthetic insecticide use without sacrificing yield.

There are two type of food spray. The yeast based food spray attract beneficial insects while the sugar based food spray help retain beneficials that are already present. For more information on the use of food sprays see page 52.

TABLE 20: Food sprays and spray additives				
Active ingredient	Concentration and formulation	Application rate of product	Comments	
Food concentrate (yeast based) sucrose, lactose, alkyl aryl sulfonate, sodium ligno sulfate	WP	2.5 kg/ha	Beneficial insect attractant. Apply prior to increase of pests. See labels of each product for notes on spray coverage.	
Food flavouring (sugar based)	265 g/L WP	0.25 L/ha 0.5 L/ha	Ground application Aerial application Spray additive to improve acceptance of insecticides by pests. Encourages feeding of stomach ingested insecticides.	

TABLE 21: Food sprays and spray additives trade names and marketers				
Active ingredient	Concentration and formulation	Trade names	Marketed by	
Food concentrate		Predfeed	Growth Agriculture	
Food flavouring	265 g/L	Mobait	Nufarm (Agnova Technologies)	

Integrated Pest Management (IPM) guidelines for Australian cotton

Lewis Wilson and Sandra Williams, CSIRO. Robert Mensah and Annie Johnson, formerly DPI NSW.

These guidelines are a brief version of the *Integrated Pest* Management Guidelines for Australian Cotton II. For more details on any of the following pages please contact the Australian Cotton Research Institute for a copy of the IPM Guidelines II.

What is IPM?

IPM involves using all means of managing pest populations with the aim of reducing insecticide use whilst maintaining profitability (yield, fibre quality and crop maturity). IPM is a whole year approach to managing pests. This includes management of pests through the cotton growing season, and through the remainder of the year as well. For instance, decisions made in the autumn and winter can have a lasting impact on pest management throughout the year.

Why do we need to develop IPM programs?

Over-reliance on synthetic insecticides creates problems, such as insecticide resistance of pests, disruption of natural enemies of the pests leading to outbreaks of secondary pests such as mites, aphids or whitefly and other environmental consequences. An IPM program that integrates a range of proactive management tactics, especially the conservation and use of natural enemies (predators and parasites) to control pests will contribute to reduced need to apply insecticides. This reduces risks from the problems outlines above. IPM is a strong complement to resistance management strategies, both for insecticides and Bt-cotton. In both cases natural mortality of pests due to the effect of beneficials and other mechanisms (eg reducing winter host for pests) reduces the overall pest pressure. This reduces the selection pressure for resistance to both pesticides and Bt-cotton.

How do we implement IPM?

IPM involves integrating a range of tools and strategies for managing pests. These can be conveniently grouped in seven main objectives:

- 1. Growing a healthy crop
- 2. Keeping track of insects and damage
- 3. Preserving beneficial insects
- 4. Preventing insecticide resistance
- 5. Managing crop and weed hosts
- 6. Using trap crops effectively
- 7. Communication and training

These objectives are explained below and there is a Seasonal activity plan for IPM in Table 1 on page 6.

Objective 1

Growing a healthy crop

This objective covers the key issues for good crop agronomy and highlights how they interact with IPM.

Crop management can affect IPM. Growing a healthy cotton crop optimises both its yield potential, fibre quality and capacity to compensate for pest damage. In irrigated cotton, a healthy crop begins with good field preparation, soil moisture and plant establishment. Poor fertiliser or irrigation management can delay crop maturity and increase the length of time that the crop requires protection from pests, potentially increasing insecticide resistance selection and pushing the crop into less favourable conditions for fibre maturation.

Field selection

When selecting fields for planting cotton consider proximity to sensitive areas such as watercourses, pastures, buildings, and the prevailing wind direction. Bollgard II varieties may be appropriate for fields near sensitive areas. Another consideration would be the proximity of cotton fields to other crops or orchards which can potentially act as a source for pests such as mites, aphids or whitefly. Care should be taken to reduce the chance that sprays applied to conventional fields will drift onto and disrupt the beneficial complex Bollgard II fields that do not need spraying. Consideration of the location of Bollgard II and non Bt-cotton will help.

Seed bed preparation

A tactic often mentioned by cotton growers in achieving an early crop is a good seed-bed, typified by friable, non-cloddy soil and firm, high, well-shaped beds. This helps achieve vigorous, healthy, early growth that tolerates seedling disease better and achieves early crop maturity and high yield potential. High beds also reduce the risk of waterlogging by encouraging good drainage. Planting cotton into standing stubble (wheat, sorghum) may offer some benefit in terms of soil condition, reduced early season pest abundance and damage and water infiltration. For more information see the publication *Planting* cotton in standing wheat stubble, available from the Cotton CRC web site www. cottoncrc.org.au

Selecting a variety

The cotton varieties planted should be matched to the region and likely pests and diseases (see seed company variety guides or websites). Select a variety that suits the growing region in terms of length of season. This will benefit the maturity timing of the crop which in turn will benefit fibre quality and defoliation as well as reducing the exposure to late season pest attack. Okra-leaf varieties have a degree of resistance to Helicoverpa spp., spider mites and silverleaf whitefly, which can potentially reduce the need to control these pests. Penetration of insecticides into the crop canopy is also better with okra leaf cultivars, which can contribute to better control.

Bollgard II cotton is ideally suited to IPM as the level of control of *Helicoverpa spp.* provided by the plant is usually sufficient to dramatically reduce the need to spray for this pest or other lepidopteran pests such as tipworm, especially early season.

Planting window

In each cotton region there is a period when soil temperatures reach 14°C minimum at planting depth and become suitable for cotton germination. Planting at this time helps maximiss plant establishment and avoids the risk of cold shock (night temperature < 12°C). Cold shock slows early growth and reduces tolerance to herbicides, seedling diseases and early pests, especially thrips. Slightly delayed planting, into warmer conditions that are less suitable for disease may reduce plant losses. However, very late planted cotton has less yield potential and is more susceptible to pests such as whitefly and late season infestations of *H. armigera* which can be difficult and expensive to control.

Coordinating planting in a region to a specified window avoids a wide spread of crop maturation, especially very late crops that require pest control over a prolonged period. Avoiding prolonged insecticide use helps manage insecticide resistance as it reduces the number of generations of the pest that are exposed to insecticides, therefore reducing the selection pressure for resistant pests.

Planting windows are critical to the success of area-wide management strategies. In areas susceptible to whitefly, coordinated planting windows can provide a period free from host crops to reduce population build up as well as preventing late crops. The 42 day planting window for Bollgard II cotton is a critical component of the Resistance Management Plan. In specific circumstances growers in a region can apply to the TIMS Committee for a variation in the nominated start/finish dates of their 42 day window. Details of this process can be found on page 80.

Optimising earliness

Although managing a crop for earliness is a good strategy, it does not always maximise yield It is undesirable to try to achieve early maturity by controlling pests which are at sub-threshold levels as this increases costs and the risks of destruction of beneficial populations. For more information on managing for early maturity, refer to Chapter 10 in FIBREpak.

Optimising water and nitrogen

Adequate water and nutrition will ensure healthy growth of plants that are more tolerant of pests and diseases. Too much nitrogen creates excessive cotton growth toward the end of the season and perhaps even the need for an extra irrigation. This makes the crop more attractive to pests, requiring additional inputs of insecticides (and mixtures of insecticides) for control, and application of high rates of growth regulators to retard growth. Too much nitrogen also undermines the effectiveness of the last generation trap crops (see below) by maintaining the attractiveness of cotton relative to the trap crop. Defoliation can also be more difficult and regrowth may harbour aphids.

Growth regulators

Excessive vegetative growth is a problem because it reduces the retention of fruit and delays maturity. Rank growth of plants also results in reduced efficacy of insecticides due to poor penetration of the canopy.

Optimal irrigation scheduling and nitrogen rates will generally prevent excessive vegetative growth, apart from during hot growing conditions. Appropriate use of growth regulators can help to reduce the likelihood of a rank crop that will not cut-out. Consult the guidelines published by the cotton seed companies to see if growth regulators are required.

Growth regulators are also used at or near cut-out, to reduce

the amount of fresh regrowth and the attractiveness of the crop. This strategy is used to lessen the likelihood of late pest infestations and reduce the number of late season sprays. See Cotton Seed Distributors (*www.csd.net.au*) calculating vegetative growth rates to determine crop needs.

Final irrigation

The timing of the last irrigation aims to ensure that boll maturity is completed without water stress, and at the same time prevent the occurrence of lush vegetative growth in crops late in the season to avoid the crop being attractive to the *Helicoverpa spp.* and other pests such as aphids and whitefly. Crops with surplus water and N will also tend to have more regrowth after defoliation, which is attractive to aphids that may then require control to avoid honeydew contamination of lint. Regular assessment of crop maturity will allow the dates of last irrigation and defoliation to be predicted.

Defoliation

The timing of defoliation can be an important IPM tool, as late pest infestation problems can sometimes be overcome by a successful defoliation. The safe timing of defoliation is when the youngest boll expected to reach harvest is physiologically mature. This usually occurs when 60–65% of bolls are open. The other method of assessing physiological maturity is when there are 3–4 nodes of first position bolls above the highest cracked first position boll (last harvestable boll), known as nodes above cracked boll (NACB).

Objective 2

Keeping track of insects and damage

The purpose of crop monitoring is to determine:

- The pest(s) present;
- The level of infestation;
- The damage they are causing;
- The level of beneficial insects;
- Expected response to control options;
- Environmental conditions; and,
- The growth stage of the crop.

This information provides the basis on which pest management decisions are made.

Check frequently

Crops should be checked frequently for pests, beneficials and for damage and fruit retention. Regular and frequent checking provides an overview of what is happening in a field in relation to pest and beneficials abundance and development. For more detailed information on checking frequency see 'Key insect and mite pests of Australian cotton' on pages 5–35.

It is generally not possible to make a decision about whether control is needed based on just one check. The decision making system needs to be flexible to allow for the action of beneficials and natural mortality to occur between checks, without the pest population developing to a stage where control is impractical or too expensive. Insect numbers should be recorded either as numbers per metre or as a percentage of plants infested to easily compare numbers with the appropriate industry threshold and to allow a predator to pest ratio to be determined.

IPM INSECTS

Monitoring pests and beneficials

Types of sampling techniques

Visual sampling: This involves inspecting the entire plant, including under leaves, along stems, in squares and around bolls.

Beat sheet sampling: A sheet of yellow canvas 1.5 m \times 2 m in size is placed in the furrow and extended up and over the adjacent row of cotton. A metre stick is used to beat the plants 10 times against the beat sheet, moving from the base to the tops of the plants. Insects are dislodged from the plants onto the canvas and are quickly recorded. This method is difficult to use when the field and plants are wet.

D-vac sampling can be used as an alternative to visual checking to sample beneficial insects and spiders.

Sweep net sampling: This method can be used as an alternative to the beat sheet when the field is wet. Sweep netting is an effective method for sampling flighty insects such as mirids, and each sample consists of 20 sweeps along a single row of cotton using a standard (380 mm) sweep net.

Comparison of methods: A recent study has shown that Helicoverpa spp., whitefly, mites, aphids, thrips and apple dimpling bug nymphs were best sampled visually, while the beat sheets were superior for the majority of other insects and spiders and the sweep net is particularly useful for sampling flighty insects such as mirid adults. Once the crop reaches 9-10 nodes, beat sheets can detect about 3 times the number of insects compared to visual sampling. Sweep nets can detect about 3 times the number of mirid adults as visual sampling, although only 1.6 times the number of mirid nymphs. These differences must be kept in mind when using the predator to pest ratio or pest threshold, as they are based on visual counts.

Refuge crops

Sampling of lucerne strips or other refugia crops to assess predator abundance should use a similar method but suction sampling (using garden blower vacs) is the most appropriate and fastest method to assess beneficial insect populations in lucerne.

How much to check

Fields are rarely uniform in crop growth and attractiveness to insects. Lush areas, such as near the head ditch, are more attractive to insects. Awareness of such areas and their size helps you to determine how many sample points are required in a crop.

Visual sampling: Check at least 30 plants or 3 to 4 separate metres of cotton per 50 ha.

Beat sheet sampling: Preliminary studies indicate that you need to beat at least 8-10 metres per field.

Sweep net sampling: Preliminary studies indicate that you need to take at least 6 sweep net samples per field.

Note: Increasing the number of samples usually increases the level of accuracy. For some pest species there are specific recommendations, see pages 5-36.

Monitoring levels of egg parasitism

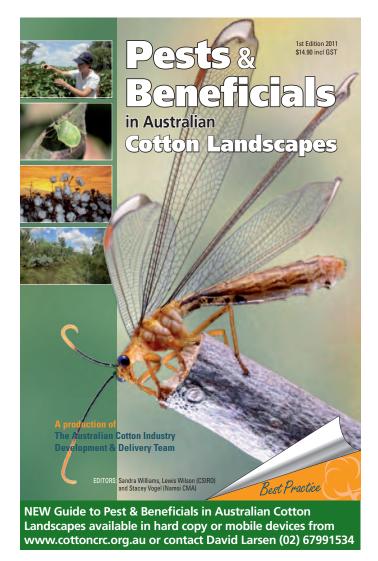
It is also important to consider natural levels of *Helicoverpa* spp. parasitism caused by parasitoids such as *Trichogramma* spp. and Telenomus spp.

The Trichogramma spp. wasps are egg parasitoids capable of causing high mortality of Helicoverpa spp. in crops. The wasp lays an egg(s) inside a *Helicoverpa* spp. egg and the hatch wasp larva(e) feeds on the egg, preventing hatching.

To monitor egg parasitism by Trichogramma spp. collect brown eggs and keep them at room temperature (about 25°C) until

they hatch (healthy) or turn black (parasitised). Collecting white eggs gives an underestimate of parasitism because they may have just been laid and not had sufficient time to be found by Trichogramma spp.

Monitoring levels of larval parasitism


There are no obvious external signs on larvae parasitised by Microplitis spp., but medium larvae (13–15 mm in length) can be split to reveal if the internal parasitoid larva is present. This is a simple procedure and can provide useful information about the potential survival of medium larvae.

Bollgard II sampling and management

Bollgard II cotton must be monitored regularly for pests and fruit retention, similar to conventional cotton. Consecutive checks are essential for making decisions about managing Helicoverpa spp. in Bollgard II crops, as the Bt toxin needs to be ingested before the larvae is controlled. Hence if the larvae population is over the threshold on a given check, then chances are that a large proportion of these will ingest the toxin and die before the next check. Bollgard II does not control a range of pests, especially green mirids which must be monitored to assess if the population will cause yield loss.

Monitoring Plant Damage

It is important to include an assessment of plant damage when making pest management decisions because insect numbers alone may not give an accurate indication of the need for control. Cotton plants can recover from a degree of damage,

INSECTS IPM

especially early season damage with no reduction in yield or delay in maturity. A vigorous, healthy crop can tolerate more damage from pests, without yield or maturity being affected, than a crop with poor vigour (as a result of herbicide damage or water stress for example).

Plant monitoring in conjunction with regular insect monitoring allows an assessment of the effects of mirids or other pests that might be difficult to detect in regular sampling. Plant monitoring can assist in decision making where pest levels are just below threshold or where there are combinations of pests present. Acceptable damage levels will vary depending on yield expectations and climatic conditions.

Fruit load, yield and maturity

Fruit load is a key aspect in determining crop yield and maturity. The loss of fruit during squaring and early flowering is less critical to yield than fruit loss later in the season. It is well documented that excessive early fruit loss can delay final maturity. However, it is also known that holding too much fruit can reduce crop growth, as the plants use their resources to fill the bolls they have set rather than continuing to grow and set more fruit. This is referred to as premature cut-out which results in reduced yield potential.

Dynamic thresholds

Decisions about pest control should be dynamic, that is, into account both pest numbers and plant fruit load. If retention data indicates that fruit load is too low then it may be necessary to lower the pest threshold. There are several causes of low fruit retention and it is important to identify the problem before action is taken. Low retention could be caused by cool weather, waterlogging, water stress or pests.

The combined damage of several pests, each below threshold, may also cause low retention. If this occurs, reduce pest thresholds to half the standard level and control those pests exceeding the reduced threshold using the most selective option available. As retention recovers, return to standard pest thresholds. Alternatively, if retention is too high it may be necessary to raise the pest threshold. This will allow some pest damage and help balance the vegetative and fruit development. This will also avoid yield loss due to premature cutout.

Check regularly

From theseedling emergence, monitor plant leaf damage and tip damage, then from squaring assess fruit retention at least every 7 days and/or before spray decisions. It is important to monitor the level of fruit loss regularly so that measures can be taken before insect damage becomes excessive.

What to check

Count a metre of plants (not random plants) in 3 to 4 locations per field. If the crop is uneven increase the number of checks. Do not use the same metre of plants for insect checks.

Damage monitoring includes:

- 1. Leaf loss (up to the 6 true leaf growth stage).
- 2. Tip damage.
- 3. Fruit retention or fruiting factor.
- 4. Boll damage.

Crop Development Tool (CDT)

The CDT (formerly the Early Season Diagnostic tool) is a web based calculator that helps to determine whether the rate of crop development is meeting its potential. Using the CDT, the development of squaring nodes, vegetative growth rate, fruit

development and nodes above white flower can each be tracked to assist with crop management decisions. The user enters real crop data as the season progresses. The tool displays this in graphical and tabular formats alongside theoretical potential or optimum. Decisions relating to insect thresholds, growth regulation, nutrition and irrigation scheduling can all be aided by a clear understanding of how crop development is progressing. The CDT incorporates a data storage function that allows multiple crops to be set up by each user and accessed by an individual logon and password. To use the CDT tool go to the Cotton CRC website; www.cottoncrc.org.au

Development of squaring nodes

For most Australian cotton varieties it is expected that the first fruiting branch will develop on about the seventh mainstem node. This becomes the first squaring node. On a well grown crop, by the time of first flower (~750 DD) there will be about 8 squaring nodes. Fewer than 8 will often reduce yield potential. Measuring squaring nodes can provide early indication of stress in time for remedial action. Once flowering commences it may be too late to recover.

Figure 1 shows the accumulation of squaring nodes from the CDT between $\sim\!500$ and $\sim\!800$ DD. A real crop to the left of the theoretical line is generally ahead in development. This could be due to low fruit retention, in which case pest thresholds should be reconsidered and the vegetative growth rate measured. Measurements below the line indicate development has been delayed, perhaps by factors such as seedling disease or herbicide damage. Resources such as nutrition and water should be monitored closely.

Fruit development

It is important to ensure that crop growth translates into fruit production at a rate that will help to attain a profitable yield. The CDT's fruit development graph displays the number of observed squares or bolls (/m) plotted against a potential rate of fruit development based on the day degree accumulation after sowing. An example is shown in Figure 2. Potential square development commences at 500 DD and boll development at 750 DD (first flower). The slopes of the boll and square development lines are not parallel as the tool assumes that there is some loss of fruit due to carbon stress, normal in crop growth (not pest, nutritional or water stress).

In Figure 2 the real crop is tracking ahead of schedule. This can occur under optimum growing conditions. Nutrition and water should be monitored closely as this crop is likely to experience high, early demands that could rapidly induce cut-out.

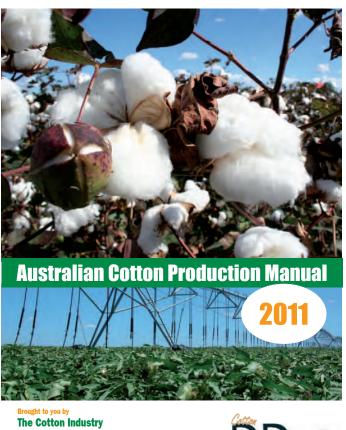
Spot the cotton grower using **AFFIRM®**

Surprisingly enough, the AFFIRM grower owns the top windscreen. While you can rely on AFFIRM to nip feeding Heliothis in the bud (as well as suppressing Green Mirids and Mites), it also has an excellent IPM profile and is soft on beneficial insects. So you get lots more of the 'good guys' working in your crop for longer. AFFIRM is also very cost effective as it has high efficacy at low usage rates.

This is because of its excellent translaminar movement into the plant, creating a weatherproof reservoir that gives you up to 10 days protection. And as for all those good insects, please drive more slowly.

For more information please call the Syngenta Technical Product Advice Line on 1800 067 108 visit www.syngenta.com.au

®Registered trademarks of a Syngenta Group Company AD11/255


Nodes above white flower (NAWF)

At the time of first flower, there should be about 8 squaring nodes above the flower, or 8 NAWF. The bolls produced on these fruiting branches will contribute a large proportion of final yield. Once boll set commences and the crop is allocating resources to the developing fruit, the rate at which the crop can produce more squaring nodes is in decline.

In Figure 1 the rate of decline in NAWF for the real crop is consistent with the optimum. Very high early retention can cause the number of NAWF to decline more quickly. For crops tracking below the line, consider increasing pest thresholds. Crops above the line may have experienced physiological shedding or early boll loss due to pests, in which case thresholds may need to be reduced. Once there are 4 or fewer NAWF, the crop is said to be 'cut-out'. This signifies that the crop has ceased putting resources into further vegetative growth and that yield potential is dependent on the retention of fruit already produced.

Vegetative Growth Rate (VGR)

The plant growth regulator mepiquat chloride provides growers with a method to help avoid excessive vegetative growth. The VGR tracks the rate of change in plant height relative to the rate of node development. Measurements should start as the crop approaches first flower and continue whilst squaring nodes are being produced. In Figure 3 the upper and lower boundaries represent the zone of desired vegetative growth rates across various regions and systems in Australia. Warmer regions

The Cotton Industry
Development & Delivery Team

2011 Australian Cotton Production Manual available from www.cottoncrc.org.au or contact David Larsen (02) 67991534

and very fertile soils will have higher VGRs. The real crop is tracking below the lower boundary indicating that growth regulation is not required to maximise yield potential.

First position fruit retention

Monitoring first position fruit retention is a technique that is best used from squaring to early flowering. It is a quick way to estimate early signs of insect damage.

- Count the first position fruit on either the top five or all the fruiting branches. The first fruiting branch is the top most branch where the first position leaf is unfolded.
- Monitor both tipped and non-tipped plants.
- Monitor only the dominant stem, not vegetative branches (see Figure 4).
- The percentage of first position fruit present should be calculated dividing the number of first position fruit present by the number of fruiting branches.

Aim to have first position fruit retention of 50-60% by first flower. Low retention (<50%) increases the risk that yield or crop maturity will be affected. However, very high fruit retention, in excess of 80% may also be associated with premature crop cutout. For the first five fruiting branches on the plant, first position fruit retention can be as low as 30% without affecting yield or maturity, however such levels should trigger close monitoring and a reduction in thresholds.

FIGURE 1: An example of tracking a crop's accumulation of squaring nodes and then the decline in nodes above white flower from the CDT.

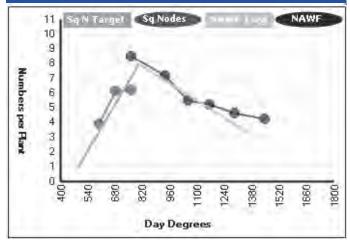
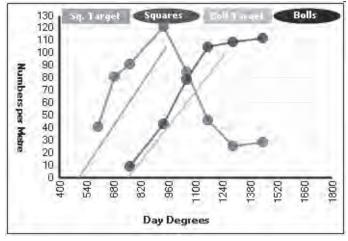



FIGURE 2: An example of tracking a crop's fruit development from the CDT.

Final retention at maturity

Boll numbers will vary according to variety, stage of growth and yield potential. At the end of the season a crop will hold less than 50% of all possible fruiting sites. First position retention will vary from 50-70%. Variety and boll size will also affect final yield.

Fruiting factor

Fruiting factors can be used throughout the season. They allow total fruit load to be monitored. Fruiting factors should be used when first position retention falls below recommended levels (i.e. 50-60%), to ensure excessive fruit loss has not occurred or in situations where a crop is heavily tipped out and retention is difficult to determine.

From 10-14 days after flowering, the monitoring of first position fruit retention may be less relevant than fruit counts. The fruiting factor technique allows a rapid interpretation of the fruit counts. The technique considers both fruit present and the number of fruiting branches (potential fruit development).

To save time in monitoring the fruiting factor, only count first and second position fruit (squares and bolls), from the main stem and the first dominant vegetative branch. In irrigated crops this should account for 90% of the fruit that will be picked.

To determine the fruiting factor for a crop, simply divide the fruit count by the number of fruiting branches.

Total fruit /m Fruiting factor = Total number of fruiting branches/m

The ideal fruiting factor changes throughout the growing season. The fruiting factor will increase throughout flowering as the plants produce a large number of squares. As the crop matures there is a natural reduction in fruit numbers and the fruiting factor declines.

Eventually, at maturity the fruiting factor approaches 1.0, which represents the natural maximum fruiting load that plants can carry through to yield.

A key period for measuring fruiting factors is at around early flowering. Values between 1.1 and 1.3 will provide optimum yield potential. Values less than 0.8 or greater than 1.5 can reduce yield.

THE SEASON				
Stage of growth	Fruiting factor			
Pre flowering	0.8–1.0			
Flowering	1.1–1.3			
Peak Flowering	1.3–1.4			
Boll maturity	1.0			

GUIDE TO USING FRUITING FACTORS AT FIRST FLOWER Fruiting factor at first Impact on yield and maturity flower < 0.8 High risk of yield decline and maturity delay (particularly in cooler regions) 1.1-1.3 Optimum for yield > 1.5 Risk of premature cut out and yield decline.

FIGURE 3: An example of tracking a crop's vegetative growth rate from the CDT.

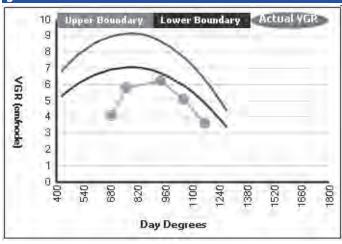
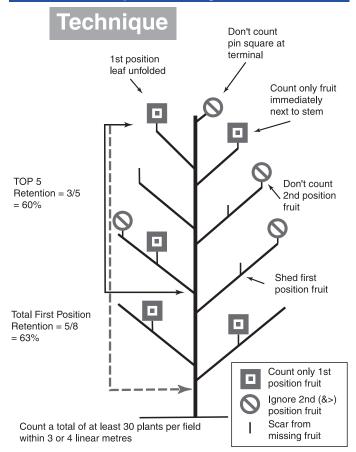



FIGURE 4: A technique for checking fruit retention

Objective 3

Conserving beneficials

Beneficials (insects, spiders, birds and bats) consume pests and other insects in order to develop and/or produce offspring. They can considerably reduce pest numbers thereby reducing the need to control pests using chemical insecticides. The abundance of beneficials is affected by food resources, mating partners, over wintering sites, shelter, climatic conditions and insecticide sprays. For an IPM system to work, the conservation of beneficials is critical. The following options focus on what you can do to help conserve and enhance the beneficial populations:

- Monitoring pests and beneficial insects and using industry thresholds
 - Using predator to prey-ratio
 - Incorporating parasitoids into control decisions
 - Tolerate non-economic early season damage;
- Using biological options
 - Eg NPV, foliar Bt, Petroleum spray oils (PSOs), Magnet[®] etc
 - Food sprays
 - Releasing parasitoids eg Trichogramma spp.;
- Using cultural practices
 - Variety selection suited for local growing conditions/ transgenics
 - Preserving native vegetation as habitat for beneficial insects
 - Using lucerne; and,
- Using synthetic insecticides (as a last resort)
 - Beneficial Distruption Index (BDI)
 - Site specific pest management.

Monitoring pests and beneficial insects and using industry pest thresholds

Frequent and accurate insect sampling, correct identification of the insect and observations of beneficial and parasitoid activity (e.g. thrips in mite colonies or brown or black parasitised immature whitefly in a colony) and sticking to the industry's pest and beneficial insect thresholds will enable you make a well informed and rational pest management decisions. This will provide the best opportunity to reduce the overall need to spray and hence help conserve beneficial populations. It is also important to consider the overall health of the crop and any pest damage that the crop may have. Remember that a vigorous healthy crop can recover from a degree of early season damage with no reduction in yield or delay in maturity. Managing pest and damage levels using industry thresholds and the predator to pest ratio will help avoid economic losses inflicted from pests.

Guidelines for the predator to pest ratio

Predator to pest ratio for sucking pests have not been determined. However, the ratio for Helicoverpa spp. has been determined and given below for both conventional and Bollgard II cotton crops. The most common predators found in cotton farms feed on a wide range of pests and are therefore classified as general predators. The guidelines described here make use of a predator to pest ratio to incorporate the activity of the predators into the pest management decisions.

Calculation of the predator to pest ratio per metre for Helicoverpa spp:

The predator to pest ratio is calculated as -

predators $\overline{\text{(Helicoverpa spp. eggs + VS + S)}}$

where VS = very small and S = small larvae.

The calculation does not include Helicoverpa medium (M) and large (L) larvae since many of the common predatory insects are not effective on these life stages.

Total predators per metre (visual check) should be used in calculating the predator to pest ratio. However, to be confident in the ratio, at least three insects of the most common predators (ladybird beetle, red and blue beetle, damsel bug, big eye bug, assassin bug, brown shield bug and lacewings) should be

Decision making protocol in conventional and Bollgard II crops

Conventional crops

Ratio	Helicoverpa spp.	Action
> 0.5	< 2	Do nothing
0.4–0.5	< threshold (mostly eggs)	Yeast based food spray might be applied.
0.4–0.5	< threshold (mostly larvae)	Sugar based food spray and biological insecticide or Petroleum spray oil (see section on lucerne on the following page)
< 0.4	> threshold	Selective insecticide

Bollgard II crops

The predator to pest threshold is essentially the same as above with a slight addition. If in the next check after a food, PSO or biological spray, Helicoverpa neonate numbers are above threshold:

Ratio	Helicoverpa spp.	Action
Increasing	≥ threshold	Repeat food /biological spray mixture
No change or 0.42–0.45	≥ threshold	Selective pesticide (possibly mix with PSO)
0.4	> threshold	Selective pesticide (possibly mix with PSO)

For more information on the use of PSOs see the Research Review 'Use of Petroleum Spray Oils to Manage Cotton Pests in IPM Programs' available from the Cotton CRC.

Incorporating parasitoids into spray decisions

Parasitoids are important beneficials in Australian cotton farming systems. There are a range of parasitic wasps and flies that attack Helicoverpa spp., green vegetable bugs, aphids and whiteflies. These useful insects are easily overlooked because they are often small or secretive. The predator to prey ratio calculation does not incorporate parasitoids particularly Trichogramma spp. (egg parasitoid). For determining parasitism see page 51.

Beneficial insect to pest ratio:

predators (eggs - (% parasitised) + VS + S)

The same decision making protocol above is used.

Tolerate non-economic early season damage

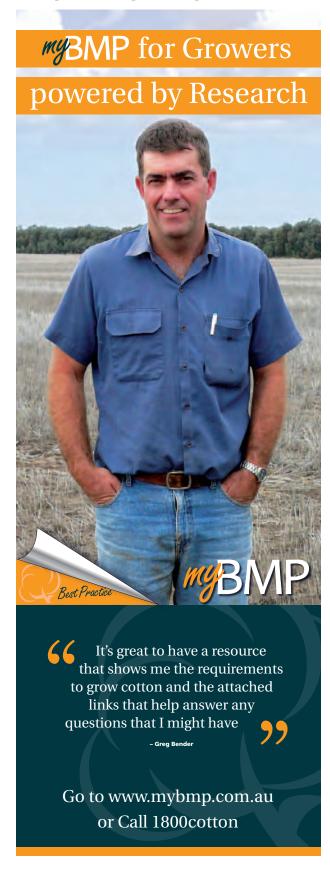
Minimising early season sprays helps to conserve the beneficial insect population. The cotton plant has the ability to tolerate a level of damage without affecting yield or crop maturity. Thresholds for damage are provided in the guide.

Knock out whitefly, aphids, mites and everything else and you could end up with a domino effect. 'Take out' the beneficial insects and another pest problem flares up.

Thankfully, there is a more selective solution. PEGASUS®, the only *Thiourea group insecticide* used in cotton, has excellent translaminar, contact and vapour activity. It knocks down feeding pests hard, yet because of its unique chemistry, is very soft on beneficial species.

PEGASUS also has a short 14 day withholding period, letting you use it up until the end of the season. This makes PEGASUS the perfect partner in your IPM resistance management program. For more information please call the Syngenta Technical Product Advice Line on 1800 067 108 or visit www.syngenta.com.au.

Powerful control. Unique chemistry.



INSECTS IPM

Using biological control options

Biopesticides, Petroleum Spray oils and Semiochemicals

The use of biopestices such as such as NPV, foliar Bt, Petroleum spray oils (PSOs) or semiochemicals, such as the moth attractant Magnet[®] to manage Helicoverpa and other sucking pests can help to conserve beneficial insects, minimize insecticide use and make it less likely to flare up other unwanted pests such as aphids, two spotted mites.

Food sprays

Food sprays can be used to attract and preserve beneficial insects especially predators into cotton farms particularly early and mid cotton season. These food sprays cannot manage cotton pests on their own but combined with other IPM compatible tools they can help manage cotton pests and minimise synthetic insecticide use without sacrificing yield. Commercially, there are two food spray products;

- 1. Yeast based food spray (Predfeed) attracts beneficial insects and should be applied when a cotton field does not have enough beneficial insects.
- 2 Sugar based food spray (Mobait) retains beneficials that are already present.

Releasing Trichogramma spp.

Trichogramma spp. can be purchased and released into crops. Two or more releases one week apart are suggested. If possible, the best method is to release the *Trichogramma* spp. into a nearby flowering sorghum or maize crop rather than into cotton. This will provide the *Trichogramma* spp. with enough *Helicoverpa* spp. eggs to carry over the population, given their very short life cycle.

Using cultural practices Variety selection

Okra leaf shaped varieties reduce the need to control *Helicoverpa* spp, mites and whitefly. Bollgard II is well suited to an IPM program because it is less disruptive to beneficial insects because of the dramatic reduction in the need to spray for *Helicoverpa* spp. This enables beneficial insects become the base of IPM program delaying pest build up and insecticide sprays.

Preserving native vegetation as habitat for beneficial insects

Perennial native vegetation is an alternate habitat for beneficials. The stability of perennial vegetation provides resources otherwise not found in cropping fields, especially when in fallow. While pest species can be found in native vegetation, most pest species do not use native hosts, so native vegetation has a low risk of increasing pest numbers. Incorporating different types of habitat on your farm ie. pastures, wetlands and woodlands will encourage a diverse range of beneficials.

To maximise the value of native vegetation for natural pest control consider the following management principles:

- Beneficials need to move between suitable habitats through the landscape to be effective. The ideal solution is to create corridors in the landscape to facilitate the dispersal of beneficials. Fence line tree plantings, wind breaks and roadside verges all provide habitat for beneficials to move through.
- Encourage beneficials with diverse, messy vegetation. Vegetation which is diverse and may appear to us to be messy, provides a suite of resources for beneficials as different organisms have different habitat preferences and requirements.
- Birds and bats also inhabit areas of native vegetation and make a significant contribution to pest management. These animals live in areas of native vegetation, but forage for insects within and over the canopy of crops. Incorporating different types of habitat on your farm ie. pastures, wetlands and woodlands will encourage a diverse range of birds and
- Controlling weeds in areas of native vegetation is important

as weeds will compete with native grasses (an alternate habitat for beneficials) and many pests use weeds as alternate hosts.

• Water located near native vegetation (eg river, storage or channel) is a source of drinking water for beneficials and also increases vegetation condition. This positively influences beneficial populations.

Managing beneficials and mirids in lucerne

If there are lucerne strips or a centrally located lucerne crop on the farm, then before applying a food spray / biological insecticide spray to the cotton, check the lucerne strip or crop to determine numbers of beneficials and adult green mirids. If beneficial insect numbers are high in the lucerne strips compared to cotton and numbers of adult mirids in the lucerne strips are low (< 5 per 20 metre d-vac sample), then slash half of each of the individual lucerne strips after applying the food spray/biological insecticide mixture sprays to the cotton. This action will enhance the movement of a large number of beneficials from the lucerne strips into the cotton, but will retain the mirids in the lucerne.

In contrast, if both beneficial and adult mirid numbers in the lucerne strips are high (> 5 mirids per 20 metres), do not slash or mow the lucerne strips or blocks when a sugar based food spray/biological insecticide mixture spray has been applied to the cotton since this will force too many mirids into the cotton where they may cause damage.

Using synthetic insecticides (as a last resort)

Intervention with broad spectrum synthetic pesticides is seen as a last resort when pests exceed thresholds and there are no effective selective management options available.

Choose insecticdes with less negative effect on beneficials

Some insecticides control pests effectively yet have very little impact on beneficials. Information of the effect of all currently available insecticides on beneficials, including at reduced rates and with salt or PSO mixtures, is provided in Tables 2 and 3, on pages 7 and 8. In general it is best to use more selective products through the early and mid season. If disruptive insecticides are used early the reduced beneficial complex means that pests will survive better and require control more often.

At the end of the season it is possible to compare the IPM compatibility of the pest management strategies used in different fields by calculating a BDI score. The BDI score for each insecticide is based on the overall impact of the insecticide on beneficial insect populations, as listed in Tables 2 and 3. More details can be found in the IPM Guidelines for Austalian Cotton Production Systems, available on the Cotton CRC website.

Site specific pest management

Many beneficial species frequently move in and out of cotton, other crops and non-crop habitats. It is important to manage pests on a field by field basis or by a small management unit, not an entire farm. Beneficals can then move from unsprayed field or native vegetation areas into sprayed field to help rebuild numbers.

Pests such as aphids or mites often infest the edge of a field, not the entire field area. It is possible to manage this type of infestation by only spraying the field borders. This enables the beneficial population to re-establish or re-build much faster.

Objective 4

Preventing insecticide resistance

Resistance occurs when application of insecticides removes susceptible insects from a population leaving those individuals that are resistant. Mating between these resistant individuals gradually increases the proportion of resistance in the pest population as a whole. Eventually this can render an insecticide ineffective, leading to field control failures. Resistance can be due to a trait that is already present in a small portion of the pest population or due to a mutation that provides resistance. Management of resistance is essential to ensure that valuable insecticides remain effective: the Australian cotton industry has developed the Insecticide Resistance Management Strategy (IRMS). The IRMS is designed to prevent resistance development, while managing existing resistance. Some core principles used in the IRMS include;

- Rotation between chemical groups with different modes of action.
- Limiting the time period during which an insecticide can be used. This restricts the number of generations of a pest that can be selected in each season.
- Limiting the number of applications, thereby restricting the number of selection events.

The IRMS 2011/12 appears on pages 68–73, with explanation and answers to many frequently asked questions on pages 63-67.

Resistance monitoring

Resistance monitoring for *Helicoverpa* spp., two-spotted spider mites, aphids and silverleaf whitefly, is conducted each year by the cotton industry and provides the foundation for annual review and updating of the IRMS. All growers and consultants have access to this industry service to investigate suspected **cases of resistance.** For the contact details of the researchers running the resistance monitoring projects, refer to the advertisement on page 48.

Pupae busting

In NSW and southern Queensland, Helicoverpa spp. spend the winter in the soil as pupae and emerge as moths in spring to mate and lay eggs. Known as diapause, this resting pupal state is induced by decreasing daylength and temperature in late summer. Most of the pupae which over-winter in cotton fields are *H. armigera*. They are likely to have a high survival rate because of the low numbers of parasites. They have the potential to carry insecticide resistance, including Bt resistance, through to the next season. Therefore, it is important to pupae bust for their control.

Pupae are likely to be found in the top 10 cm of the soil surface. Cultivate to achieve disturbance of the soil sufficiently to destroy pupae or their emergence tunnels. The tillage required for;

- 1 m hills till the whole hill:
- 2 m beds till across the whole bed and almost down to furrow level;
- Skip-row till right across the soil surface.

Pupae busting Bollgard II cotton fields is mandatory between picking and the end of July. Prior to the 2007-08 season the IRMS guidelines for pupae busting in sprayed conventional cotton were amended. Details of the amendments are presented in the IRMS section starting on page 63.

FIGURE 5: Estimated rate of Helicoverpa entering diapause at Dalby from May 5, 2010.

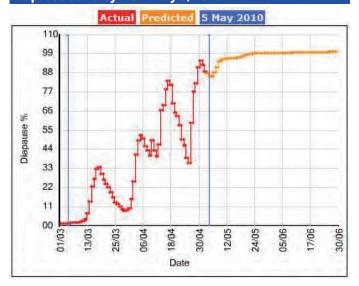
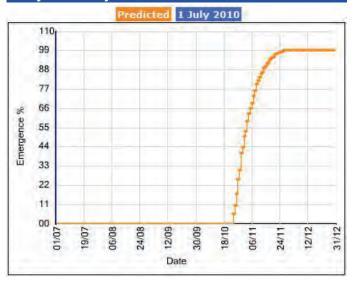



FIGURE 6: Helicoverpa moth emergence from diapause at Dalby run on July 1, 2010.

Web tool to assist pupae busting decisions

The proportion of pupae entering diapause increases from low levels in March to high levels, almost 100%, by late April. However the rate of diapause induction varies from season to season and region to region. Knowing when diapause is induced is useful for identifying 'high risk' fields, i.e. those fields most likely to have diapausing pupae that should be targeted for pupae busting. On the Cotton CRC website, a web tool is available to help calculate the likely rate of diapause induction for your area, based on local climate data. An example of the web tool output is provided in Figure 5. The tool is also able to compare the results for the current season with the long term average and hotter than average or cooler than average seasons. The web tool can also be used to predict the rate of moth emergence from diapause in spring. This can assist in timing pupae busting operations to maximise their effectiveness. The breaking of diapause is influenced by temperature. The tool calculates the emergence percentage from the day after the threshold temperature of 18°C is reached. To use the tool go to: http://cottassist.cottoncrc.org.au/DIET/DIETTool.aspx

Trap crops and weed control

Trap cropping and weed control assists resistance management, as well as IPM, by reducing the size of the overall pest population which reduces the need to apply insecticides and reduces the selection pressure for the pest to develop resistance.

Resistance management for Bollgard II cotton

Resistance management for Bollgard II cotton is critical due to the season long selection of *Helicoverpa spp.* to the Bt toxins produced by Bollgard II. A proactive Resistance Management Plan (RMP) has been developed to preserve the effective life of Bollgard II. This plan is provided in full on pages 81-85 and many frequently asked questions about the RMP are answered on pages 74-79.

Resistance management guidelines for all crops

Several other strategies that are relevant to cotton and other spring and summer crops can also help in managing resistance. These include:

- 1. Avoid cross selection for resistance. Spraying for one pest can be simultaneously selecting resistance in another pest that is present, even though that pest is at sub-threshold levels and not specifically being targeted. For example, if a neonicotinoid is used to control mirids, do not follow up with another neonicotinoid for aphid control as the first spray may have already selected for resistant aphids. This applies to all insecticides which target multiple pest species.
- 2. Selective insecticide use is preferable, consistent with the IRMS, as this helps conserve beneficial insects. Beneficials eat or parasitise resistant as well as susceptible pests. Beneficials can lower overall populations of insect pests.
- 3. Ensure spray applications are accurate, timely and triggered by pest thresholds. Using plant compensation allows for the plant's capacity to recover from a degree of damage without loss, thereby avoiding insecticide applications to prevent noneconomic damage.

IPM

Objective 5

Managing crop and weed hosts

Weed management

The potential for pests to over-winter on weeds, and infest the subsequent cotton crop early in the season, is often greatest when a mild wet winter occurs. Abundant growth of weeds in these conditions creates difficulties with their control. Ideally, management of weeds, in fallow fields, cropped fields, and in the borders and headlands should be undertaken early in winter and continue through the winter and spring as necessary.

Weeds provide over winter hosts for a number of pests including mites, whitefly, mirids, aphids, tipworm, cutworm and armyworm. The control of weeds also has implications for managing cotton diseases, as some weed species are disease hosts. For example bladder ketmia (Hibiscus trionum) is an alternative host for Fusarium wilt (Fusarium oxysporum var. vasinfectum) and marshmallow (Malva parviflora) is a host of Cotton Bunchy Top disease.

Weeds also harbour beneficials. However, the potential problems that on-farm weeds may cause, by providing over winter hosts for pests and some diseases, generally outweighs their value as a refuge for beneficials. Growing of refuge crops for beneficials, such as lucerne, is an option available to growers who want to enhance beneficial numbers.

Most insect pests that attack cotton utilise one or more weeds, native plants or alternative crops as hosts. For more information see the sub-section **Overwintering habitat** for each pest in the Key insect and mite pests of Australian cotton starting on page 5.

Managing cotton regrowth

Regrowth of cotton after harvest (also called ratoon cotton) or growth of cotton from fallen seed (volunteer cotton) provides refuge for Helicoverpa spp., spider mites, green mirids, apple dimpling bugs, aphids, SLW and solenopsis mealybug. Regrowth and volunteers should be controlled by slashing, root pulling and/or mulching to prevent pests being carried between seasons (see page 118).

Regrowth/volunteer cotton is also a risk for carry-over of the disease Cotton Bunchy Top (CBT). Cotton aphids feeding on these plants could then pick up CBT and spread it to adjacent cotton crops in the following season. Cotton regrowth also has implications for managing soil-borne diseases (see the Integrated Disease Management guidelines).

Technology Users Agreements for GM cottons require the control of cotton regrowth and volunteers. For more information on the requirements for managing Bollgard II volunteers, see pages 81-85, for Roundup Ready Flex volunteers see page 104 and for Liberty Link volunteers see page 102.

Rotation crops

Growing a range of crops can be seen as essential to providing a habitat for a variety of insects. Cotton in monoculture over a wide area provides a little opportunity for beneficials to thrive and persist.

The selection of a rotation crop has many implications for pest management. Rotation crops are hosts for a range of pests, such as mites (faba beans, safflower), aphids (faba beans, canola) or H. punctigera (chickpeas, canola). Some rotation crops may also affect carry over of disease or conversely provide a disease break as suggested in IDM guidelines.

Options for managing pests in rotation crops should also be considered. With no major initiative to structure insecticide resistance management in field crops other than cotton, follow the basic IPM principle to use as many methods as possible to manage pests.

For resistance management in rotation crops the guidelines in Objective 4 can be followed, see page 59.

Objective 6

Use trap crops effectively

Trap cropping is an IPM tactic that can be utilised on a farm level or area wide basis. Trap cropping aims to concentrate a pest population into a manageable area by providing the pest with an area of preferred host crop. When strategically planned and managed, trap crops can be utilised at different times throughout the year to help manage a range of pests. This assists resistance management as well as IPM, by reducing the size of the overall population which reduces the need to apply insecticides and reduces the selection pressure for the pest to develop resistance.

First generation or spring trap cropping

Spring trap crops are designed to attract *H. armigera* adults as they emerge from over wintering pupae in spring. Larvae arising from eggs laid in the crop are controlled using a biological insecticide or allowed to pupate and are controlled by cultivation. A trap crop, strategically timed to flower as pupae are emerging in spring combined with effective pupae busting in previous autumn can help to reduce the early season buildup of *H. armigera* in a district.

An ideal first generation trap crop is one that is; very attractive to *H. armigera*, is a good nursery for beneficials, does not host secondary pests or diseases, does not become a weed problem and is easy to establish and manage. Many winter crops have been trialled to measure their potential as a spring trap crop. Chickpea has consistently proven superior to all other crops in its ability to generate large numbers of *H. armigera*, however it is not a good nursery for beneficial insects. Chickpea has also proven to be agronomically robust, being suitable for both dryland and irrigated situations.

Growers must ensure trap crops do not become future nurseries of Helicoverpa spp., and so effectively controlling populations in the trap crop by timely destruction of the crop itself is required. Timely crop destruction is preferred to control of the population by the application of insecticide. The advantages of physical crop destruction are:

- That it avoids the use of conventional insecticides and the exposure of this first generation of the season to selection
- Where larval densities are extremely high crop destruction will result in higher mortality than the application of biological insecticides e.g. Bt and NPV.

Summer trap cropping

Summer trap cropping has quite a different aim from that of spring trap cropping. A summer trap crop aims to draw Helicoverpa spp. away from a main crop such as cotton or mungbeans and concentrate them in a small area planted to another crop such as sorghum, pigeon pea or lab lab. Once concentrated into the trap crop, the larvae can be controlled.

INSECTS IPM

Some summer trap crops may produce large numbers of beneficial insects that can then move into nearby crops, for example, the *Trichogramma* spp. in sorghum and maize. The aim of a 'last generation' summer trap crop is to attract moths emerging from non-diapausing pupae under cotton. These pupae are likely to be more abundant under conventional cotton and will have had intense insecticide resistance selection on the cotton crop. Concentrating the eggs from these moths in the trap crop allows the resulting larvae to be controlled using biological insecticides such as a virus or by cultivation to kill the resulting pupae.

The trap crop would be planted mid season, to ensure that it was highly attractive to *H. armigera* late in the cotton season. The attractiveness of the cotton crop relative to the trap crop may significantly influence the potential effectiveness of this strategy.

In Central Queensland cotton growers are using summer trap crops of pigeon pea as part of the RMP for Bollgard II cotton. More information on trap cropping requirements in Bollgard II cotton is on page 83.

Objective 7

Communication and training

Communicate with neighbours

Communication with neighbouring primary producers is essential to develop a successful IPM program. It is just as important to communicate with non-cotton growing neighbours and if possible encourage your neighbours to reciprocate a level of communication.

Pesticide Application Management Plan

The core best management practice for safe and responsible pesticide use is to develop a pesticide application management plan (PAMP). The PAMP will help ensure that everyone involved in a pesticide application has a clear understanding of their responsibilities. It also helps identify the risks associated with pesticide applications so that controls to minimise those risks can be put in place.

A PAMP has two essential aims:

- 1. Establishing good communication with everybody involved and interested in the application of pesticides. This communication is required both pre-season and during the season. It should exist between the grower, the applicator, the consultant, farm workers and neighbours.
- 2.Ensuring appropriate application techniques and procedures are used.

Supporting these aims is good record keeping – of each aspect of the PAMP itself, and the details of pesticide application. This record keeping is important to check the effectiveness pesticide applications, to comply with regulatory requirements and to demonstrate due diligence.

For more information and assistance in developing a PAMP consult the myBMP website and contact your Cotton Australia Grower Services Manager.

Area Wide Management (AWM)

AWM groups or IPM groups acknowledge that pest and beneficial insects are mobile, and that the management regimes to control pests imposed on a given field are likely to alter the abundance of beneficial insects and levels of insecticide resistance in pest populations in the surrounding locality. By communicating and coordinating strategies, AWM groups have successfully implemented IPM.

AWM for population management

AWM in the true sense primarily strives to reduce pest pressure by co-ordinating the efforts of growers in an area. The strategy is based on reducing the survival of over wintering, insecticide resistant *H. armigera* pupae, reducing the early season build-up of *H. armigera* on a regional/district scale, and to reduce the mid-season population pressure on Helicoverpa-susceptible crops.

The main tactics are spring trap crops, conservation of beneficial insects and cultivation of diapausing pupae. A critical component is to bring together farmers from a range of different enterprises, including cotton and other dryland crops. As *H. armigera* is a pest common to most of these crops it is vital to have all types of growers involved if AWM is to succeed. AWM or IPM Groups

These groups focus on communication and co-ordination to achieve agreed IPM goals, These may include conserving beneficials, delaying use of disruptive insecticides, reducing the risk of drift between farms and the planting of trap crops. A key element of most groups that have worked well has been regular meetings before and during the season to share information, discuss strategies and build rapport.

For more information on getting a group started and/or maintaining momentum of a group see the IPM Guidelines II, or contact your regional cotton extension officer or district agronomist.

Meetings and groups

Throughout the season and during the winter, there are normally a variety of meetings and field days held in each major region that focus on current and future issues associated with IPM.

In some regions there may be groups formed to focus on achieving agreed IPM goals. These may include conserving beneficials, delaying use of disruptive insecticides, reducing the risk of drift between farms and the planting of trap crops. A key element of most groups that have worked well in the past has been regular meetings before and during the season to share information, discuss strategies and build rapport.

For information on future meetings or getting a group started contact your regional cotton extension officer or district agronomist.

Training

The Cotton Production Course is a university based course consisting of four units. The course is available for part time external students at both undergraduate and graduate level. Coordinator – Brendan Griffiths (02) 6773 3758.

For all other training and education enquires contact Mark Hickman (DEEDI Qld) – mark.hickman@deedi.qld.gov.au

Insecticide Resistance Management Strategy (IRMS) for 2011/12

Louise Rossiter and David Larsen, DPI NSW Sharon Downes and Lewis Wilson, CSIRO Dave Murray and Melina Miles, DEEDI Qld Tracey Leven, CRDC

The use of pesticides selects for resistance in pest populations. The cotton industry IRMS seeks to manage the risk of resistance in aphids, mites and *Helicoverpa spp.*, both in conventional and Bollgard II cotton. Additional resistance management requirements are also in place for managing the risk of *Helicoverpa spp.* developing resistance to Bollgard II (refer to pages 74–85). Below, the key elements of the IRMS are described and questions regarding the design and reasons for the IRMS are answered. In this document, the term 'insecticide' refers generally to pesticides used for insect or mite control. The resistance risk management for silverleaf whitefly is built into the Silverleaf Whitefly Threshold Matrix (refer to page 29).

Checklist

- Use recommended thresholds for all pests to minimise insecticide use and reduce resistance selection. Refer to Table 17 pages 38–39.
- Monitor first position fruit retention at flowering and aim to retain at around 60% or alternatively maintain a fruiting factor of between 1.1 and 1.3. Refer to Objective 2 *Keeping track of insects and damage* in IPM section page 50.
- Avoid repeated applications of products from the same insecticide group, including Bt products, even when targeting different pests. Rotate between groups. Consider seed treatment as a 'spray' and do not apply a first foliar spray from the same insecticide group as the seed treatment.
- Do not exceed the maximum recommended use limits indicated on the Insecticide Resistance Management Strategy charts for cotton (see pages 71–73).
- Do not respray an apparent failure with the same product or another product from the same insecticide group. Rotate to a different group.
- For all pest species, aim to use the most selective insecticide
 options first, delaying the use of broad spectrum insecticides
 for as long as possible. On the IRMS charts the options are
 arranged from top to bottom in order of selectivity. Using
 the most selective option helps conserve beneficial insects,
 reducing the chance of mite, aphid and silverleaf whitefly
 outbreaks.
- Monitor mite populations regularly after seedlings emerge. If established mite populations are present (5–10% of plants infested) avoid using broad-spectrum insecticides to control other pests. Instead use selective options or options that also control or suppress mites, either alone or in mixtures as required.
- Avoid early season use of omethoate or dimethoate. When targeting mirids, avoid early season dimethoate / omethoate use as it will select catastrophic pirimicarb resistance in aphids.
- Control weeds and volunteer cotton on farm to minimise alternative hosts for mites, aphids and silverleaf whitefly

- through winter and particularly in the lead up to cotton planting.
- Cultivate cotton and residues of alternative host crops as soon as possible after harvest to destroy overwintering *H. armigera* pupae. In Bollgard II fields, cultivation must be completed before the end of July.
- Comply with any use restrictions placed on insecticides used on other crops. This will reduce the chance of prolonged selection for resistance over a range of crops.

Your questions answered

How was the 2011/12 IRMS decided?

The development of the Insecticide Resistance Management Strategy is driven by the Transgenic and Insect Management Strategies (TIMS) Committee. TIMS is a part of Cotton Australia. The results from the insecticide and miticide resistance monitoring programs, carried out during the season, are used to inform the committee of any field-scale changes in resistance levels. Extensive communication and discussion with cotton growers and consultants is undertaken in all regions of the Australian cotton industry before TIMS finalises their recommendations. Communication is critical for ensuring that the IRMS is practical and can be implemented.

How do insects develop resistance?

Resistance is an outcome of exposing pest populations to a strong selection pressure, such as an insecticide. Genes for resistance naturally occur at very low frequencies in insect populations. They remain rare until they are selected for with a toxin, either from an applied pesticide or from within Bollgard II. Once a selection pressure is applied, resistance genes can increase in frequency as the insects carrying them are more likely to survive and produce offspring. If selection continues, the proportion of resistant insects relative to susceptible insects may continue to increase until reduced effectiveness of the toxin is observed in the field.

On the IRMS chart, what do the colours for the various products represent?

In the IRMS charts, the different colours for the various products correspond to colours assigned in the IRMS Insecticide & Miticide Product Key. Like colours indicate the products have the same mode of action, as indicated by the same insecticide group number. Insecticides with the same mode of action kill pests by the same mechanism eg. by affecting the function of nerves or by paralysing mouthparts. Hence, if insects (or mites) develop resistance to one insecticide in a particular mode of action group, they may also be resistant to other insecticides in that group.

What is the scientific basis of the IRMS?

The basis of the IRMS is to minimise selection across consecutive generations of the pest. Pest life cycles therefore determine the length of the 'windows' around which the IRMS is built. As the life cycles of *Helicoverpa spp.* and the sucking pests are very different, the strategy for one will not manage resistance for the other.

Helicoverpa spp.

Ideally the length of the 'windows' would be 42 days (average) time from egg to moth) to minimise the selection pressure across consecutive generations. Most chemicals are restricted to windows of between one and two generations to account for the practicalities of pest control. To counteract this compromise there are additional restrictions on the maximum number of applications for each chemical group.

Sucking pests - mites and aphids

The resistance strategy for the short life cycle pests depends on rotation of insecticides/miticides between different chemical groups (different modes of action) to avoid selection over successive generations. Non-consecutive uses of chemistries is particularly important for aphids as they reproduce asexually. All offspring from a resistant aphid will be resistant. There are also restrictions on the maximum number of uses for individual products and chemical groups to further encourage rotation of chemistries.

Does IRMS seek to manage resistance in Silverleaf Whitefly (SLW)?

SLW has not been incorporated into the IRMS charts because the use patterns of the available chemistries and the thresholds for the pest require that products be used in windows based on crop growth stage and rate of SLW population growth rather than the use of calendar dates. The SLW Threshold Matrix is designed to minimise the need to intervene with chemical control as well as to delay the development of resistance. The general principles applied in developing the IRMS are still relevant for all pests, including SLW.

Refer to the SLW Threshold Matrix, page 29, for industry recommendations on the best way to utilise the available products with the lowest risk of developing resistance.

How do refuges help manage resistance to Bt in Bollgard II, and do they help manage resistance to insecticides in *Helicoverpa*?

Growing refuge crops is a pre-emptive resistance management strategy. It is being implemented to prevent field-scale resistance to Bollgard II. This is important as the success of the refuge strategy depends on the majority of the general population being susceptible (SS). When a susceptible moth mates with a resistant moth (RR), the offspring carry one allele from each parent (RS). These offspring are referred to as heterozygotes. In the cases of Bt resistance that have so far been identified, heterozygotes are still controlled by Bollgard II cotton,

Refuges are able to help manage Bt resistance through the generation of SS moths. If RR moths are emerging from Bollgard II fields, they are more likely to mate with SS moths if a refuge has been grown. The RS offspring is susceptible to Bollgard II and an increase in the frequency of RR individuals can be prevented.

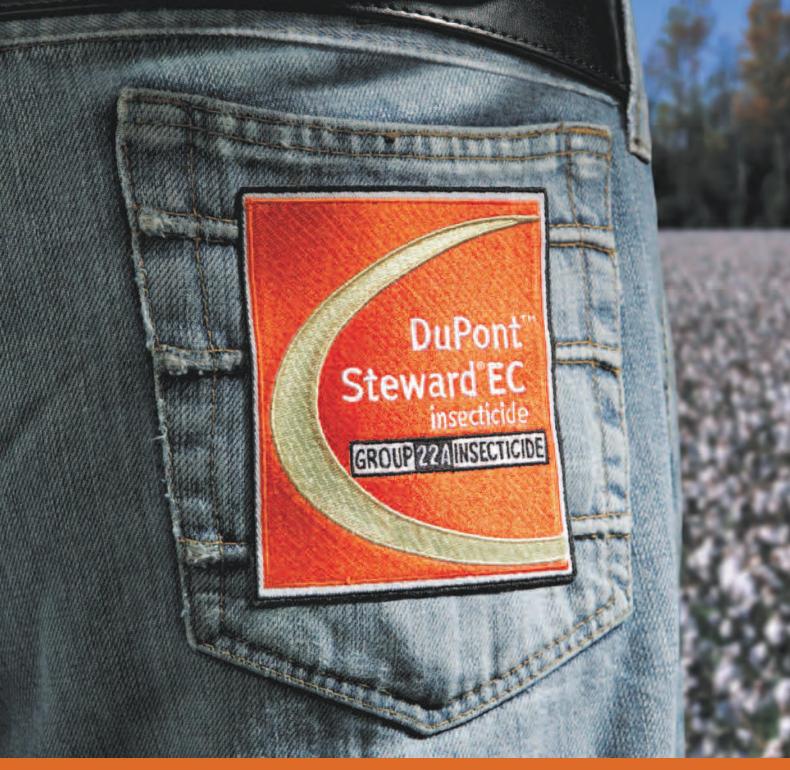
This is not always the case for resistances to other insecticides. For many of the conventional insecticides (to which resistance has already developed), resistance mechanisms are functionally dominant. This means that heterozygotes (RS) survive the application and can make up a large part of the resistant population. In such circumstances the dilution effect created by refuges is far less effective.

While refuges cannot assist when insecticide resistance is already prevalent in the field population, such as with synthetic pyrethroids, there may be some benefit from the unsprayed refuge options for new chemistries. Unsprayed refuges will produce moths that have not been exposed to insecticide selection pressure.

Why is there a Northern, Southern & Central IRMS?

The IRMS has always accounted for pest movement among different cotton growing regions. For example several field studies have shown that Helicoverpa spp. moths can travel large distances. Recently, some genetic work showed that mirids move long distances between regions. Insecticide resistance in one region can therefore spread to other regions by pest migration. The TIMS Committee designs the IRMS to reduce the chance that pests moving between regions would be reselected repeatedly by the same insecticide group. This is done by limiting the time period over which most insecticides are available. The strategies also accommodate the different growing seasons from central Queensland through to southern NSW.

Will the large uptake of Bollgard II reduce the population sizes of Helicoverpa spp.?


It is too early to tell whether the widespread use of Bollgard II will affect the size of natural populations of *Helicoverpa*. H. armigera is closely linked with cropping regions so it is possible that a reduction in numbers of this pest will occur over time. In most seasons, the majority of moths are locally generated, so Bollgard II may act as a 'sink' and influence the overall population size. However, this species uses hosts other than cotton and, even with widespread use of Bollgard II, population sizes may be regulated by the abundance of these alternative

In contrast, large populations of *H. punctigera* moths can be generated in inland areas and migrate to cotton growing regions. As these moths are generated in other environments, Bollgard II will have little effect on the size of these populations, especially early in the season following the annual spring migration events of this species. However the size of these populations will be strongly influence by the availability of hosts, which is largely determined by rainfall. Years where inland areas receive little rainfall may produce few migrating moths.

Why do we need an IRMS in conventional cotton when there are such large areas of Bollgard II?

Whenever insecticides are used there is selection pressure for resistance. In Bollgard II cotton, aphids, mites, mirids and silverleaf whitefly are no longer secondary pests. More often than not, it is this range of pests that require intervention with foliar insecticides to protect cotton yield and quality and as such there is a risk of resistance developing in these populations. The IRMS charts seeks to directly manage the risk of resistance in aphids & mites and the principles underlying the IRMS should be followed in making mirid control decisions and have been incorporated into the SLW threshold matrix.

Large areas of Bollgard II will not change the frequencies of resistance genes being carried by *H. armigera* moths. The same proportion of resistant and susceptible moths will continue to lay eggs in cotton – be it conventional or Bollgard II. Hence the likelihood of resistance development to foliar and soil applied insecticides remains the same, even if the overall size of the H. armigera population is reduced. Continuing to follow the IRMS will ensure that the industry retains the ability to control

PERFECT IF YOUR GENES START TO FADE.

New cotton varieties with inbuilt pest control genes have changed cotton protection. But when a crop requires a chemical insecticide, look no further than DuPont™ Steward® EC. It is highly effective against Heliothis and has the added benefit of controlling Mirids, while remaining gentle on beneficial insects. Furthermore, Steward® EC is simpler to pour, mix and spray.

New Steward® EC has no odour, has good residual activity, is rainfast after 2 hours, is UV stable and offers reduced buffer zones.

In short, Steward® EC is the one to reach for if your cotton's genes begin to fade.

ALWAYS REFER TO THE PRODUCT LABEL BEFORE USE.

Copyright © 2011 DuPont. All rights reserved. Du Pont (Australia) Ltd. 7 Eden Park Drive, Macquarie Park NSW 2113. ACN 000 716 469. The DuPont Oval Logo, DuPont™, The miracles of science® and Steward® EC are trademarks or registered trademarks of DuPont or its affiliates. DP1524/S

H. armigera effectively with insecticides on conventional cotton both now and in the future The IRMS should always be consulted when making a spray decision, even in Bollgard II cotton.

When do stage windows start and stop?

The dates shown on the strategy charts are for the start of each stage. Windows will start at 00:01 h on the date shown as the start (e.g. 15 December for Stage 2 in Central areas) and end at midnight 24:00 h on the day before the start of the next window (e.g. 1 February for Stage 2 in Central areas). For those individual insecticides and miticides that start or end outside window boundaries, the start and end dates are specified and the same principles apply.

What do the terms cross-resistance and multiple resistance mean? How can they be minimised?

Cross-resistance occurs when selection for resistance against one pesticide also confers resistance to another pesticide, either from the same mode of action group or a different group. For example, the mechanism for pirimicarb resistance (Group 1A) in aphids also gives resistance to omethoate/dimethoate (Group 1B). Cross-resistance is important as it means that a pest may be resistant to a chemical to which it has never been exposed (i.e. without selection pressure).

Multiple resistance simply means that an insect is resistant to more than one mode of action group. For instance, H. armigera can have metabolic resistance to synthetic pyrethroids (Group 3A) and nerve insensitivity to organophoshates (Group 1B). The development of both cross-resistance and multiple resistance can be minimised by following the IRMS. The strategy is designed to manage both of these occurrences. For example, in the strategy for aphids, there is a break between the use of pirimicarb and dimethoate/omethoate during which other chemistries should be used. The use of alternative chemistries should minimise the number of pirimicarb resistant aphids being exposed to dimethoate/omethoate.

Is pupae busting in conventional cotton still important for resistance management?

Yes. Pupae busting is an effective, non-chemical method of preventing resistance carryover from one season to the next. The pupae busting guidelines for sprayed conventional cotton are based on the likelihood that larvae will enter diapause before a certain date, allowing for removal of pupae busting operations in field specific situations. The estimated commencement date of diapause is based on the model which drives the Helicoverpa Diapause Induction and Emergence Tool on the Cotton CRC website. The model was developed from field research conducted on the Darling Downs by DEEDI and has broad application to farming systems in eastern Australia. The web tool predicts the timing of diapause.

Post Harvest Pupae Destruction statement

Sprayed conventional cotton crops defoliated after the 9th March are more likely to harbour insecticide resistant diapausing Helicoverpa armigera larvae and should be pupae busted as soon as possible after picking and no later than the end of July.

How does the use of insecticide mixtures fit in the IRMS?

When used repeatedly, mixtures are high-risk and a controversial strategy for managing resistance. They can undermine the IRMS by repeatedly selecting for resistance to the common components in mixtures and by selection for resistance across multiple chemical groups. When mixtures are used frequently, it becomes difficult to determine whether each component is contributing equally to efficacy.

The use of mixtures to overcome the effects of resistance requires very careful consideration. As a general rule, mixtures are unnecessary in situations where individual products provide adequate control.

Several criteria need to be met for mixtures to be effective. Components of the mixture should:

- Be equally persistent;
- Have different modes of action;
- Not be subject to the same routes of metabolic detoxification; and,
- Be tank-mix compatible.

In addition, the majority of the pest population should not be resistant to any component of a mixture, as this may render it a redundant or 'sleeping partner' in terms of insect control. When very heavy Helicoverpa spp. pressure occurs and egg parasitism percentages have been low, include an ovicide (e.g. amitraz and methomyl) in sprays to take the pressure off larvicides. When targeting sprays against eggs and very small larvae and do not expect 100% control with any insecticide or mixture of insecticides. If larval numbers are reduced below threshold then the treatment should be regarded as effective. Some mix partners provide more than additive kill (synergism), but this is not always the case. Some mixtures may in fact result in reduced effectiveness. For example the synergists, piperonyl butoxide (PBO) and propargite, may increase the efficacy of pyrethroids against H. armigera, but may be antagonistic if mixed with organophosphates or chlorfenapyr. The Croplife Australia Insecticide Resistance Management Group, recommend that no two compounds from the same chemical group/mode of action be included in a mixture (e.g. chlorpyrifos and profenofos). The repeated use of any insecticide with different mix partners will also increase selection for resistance e.g. pyrethroid plus propargite, followed by pyrethroid plus amitraz, followed by pyrethroid plus organophosphate.

It is illegal to use rates above those recommended on the label of an insecticide alone or in mixtures. Efficacy will not always improve at rates above the highest label rate or if two insecticides of the same chemical group are applied as a mixture.

Can emergency changes be made to the IRMS during the season?

Yes, the TIMS Troubleshooting Committee (TTC) was established by TIMS to act on its behalf to respond quickly to requests to vary the Strategy temporarily for specific regions. The TTC is not able to approve major changes to the Strategy that is the role of the TIMS Committee.

What is the process for requesting a within-season change to the IRMS?

The TIMS Troubleshooting Committee (TTC) has put in place a clear process for handling requests for within-season changes to the IRMS.

A request to temporarily alter the Strategy for a district or part of a district can be initiated by any grower or consultant, but it will not be considered by the TTC unless it is presented with clear evidence of having been discussed and gained majority support at a local level. This will include:

IRMS

- Evidence that the local consultants who might be affected by the requested alterations have discussed them and are in agreement.
- A request from the local Cotton Growers Association (CGA) that outlines the problem and the preferred solution.
- Evidence that all reasonable efforts have been made to apply the alternatives available within the strategy.

The request can be faxed or emailed to Lewis Wilson. A return contact name and phone number should be included so that receipt of the request can be acknowledged and further discussion can be held with a TTC member if required. All members of the TTC will be faxed or emailed the request and asked to respond to an ACRI contact point by 10 a.m. the following morning (or the next working day if the request is lodged on a weekend or public holiday). A decision will then be made and a response issued by 12 noon. All reasonable efforts will be made to meet this level of response, however it should be recognised that complex or poorly communicated requests may take longer to resolve.

The granting of a request by the TTC to temporarily alter the Resistance Strategy applies to a specific district. It does not confer the same temporary changes to other districts unless they have also lodged a request to the TTC in the manner outlined above. TTC changes for a region have a limited duration and do not carry over from one season to the next.

Considerations following a suspected spray failure In the event of a suspected pest control failure, don't panic as it is important to assess the situation carefully before deciding on a course of action. The presence of live pests following an insecticide application does not necessarily indicate insecticide failure. What is the insecticide's mode of action? Has it been given enough time to work? Products such as thiodicarb, foliar Bt, NPV and indoxacarb are stomach poisons and may not give maximum control until 5-7 days after application. Similarly, propargite, abamectin, pyriproxifen and diafenthiuron are slow acting and may take 7–10 days or longer to achieve maximum control. In some instances pest infestation levels remain high following a treatment but little if any economic damage to the crop occurs (e.g. if the pests are sick and have ceased feeding. When diagnosing the cause of an insecticide failure, it is important to remember that there are a wide range of variables that influence insecticide efficacy. These include species complex, population density and age, crop canopy structure, application timing, the application method, carrier and solution pH - and their effects on coverage and the insecticide dose delivered to the target, environmental conditions, assessment timing and insecticide resistance expressed in the pest population. For every insecticide application, it is the interaction of all of these factors that determines the outcome. While it will not be possible to optimise all of these variables all of the time, when more compromises are made, there is a greater likelihood that efficacy will be unsatisfactory. It is also important to maintain realistic expectations of the efficacy that can be achieved. For example, do not expect satisfactory control of medium and large Helicoverpa larvae late in the season, regardless of the insecticide treatment used. If a field failure is suspected to be due to insecticide resistance, collect a sample of the surviving pest from the sprayed

- For Helicoverpa, Sharon Downes (02) 6799 1500.
- For mites and aphids, Grant Herron (02) 4640 6333.

field using the industry guidelines and send to the relevant

• For whitefly, Richard Lloyd (07) 4688 1315.

Sending samples for testing can confirm or rule out resistance as the cause of the spray failure and is an important part of assessing the presence of resistance across the industry.

After any spray failure, do not follow up with an application of the same insecticide group alone or in mixture (at any rate). Rotate to an insecticide from a different mode of action group.

TIMS TROUBLESHOOTING COMMITTEE CONTACTS 2011/12				
Name	Telephone	Fax	Email	
Lewis Wilson, CSIRO (chair person)	(02) 6799 1550	(02) 6793 1186	lewis.wilson@csiro.au	
Tracey Leven, CRDC	(02) 6792 4088	(02) 6792 4400	tracey.leven@crdc.com.au	
Greg Kauter, Cotton Australia	(02) 9669 5222	(02) 9669 5511	gregk@cotton.org.au	
Lisa Bird, DPI NSW	(02) 6799 1500	(02) 6793 1186	lisa.Bird@industry.nsw.gov.au	

researcher.

Cotton IRMS: 2011/12

Explanatory notes for all regions.

Key changes for the 2011/12 cotton season

The IRMS has a new layout. The Helicoverpa table has been combined with the Aphids & Mites table.

In the current era of GM cotton, aphids, mites, mirids and silverleaf whitefly are no longer secondary pests. More often than not, it is this range of pests that require intervention with foliar insecticides to protect cotton yield and quality.

For 2011/12 there are no changes to window dates or product windows. However, the endosulfan and spinosad windows have been removed due to the discontinuation of supply of these products.

Witholding periods (WHP) for products no longer appear in the IRMS, however are included within the Guide. Refer to pages 157–158, Tables 44 and 45, for full listings of product re-entry periods and withholding periods.

In-season Troubleshooting

Ratification of the IRMS prior to the start of each season is the responsibility of Cotton Australia's TIMS Committee. A Troubleshooting sub-committee is empowered to act on TIMS' behalf during the cotton season to respond to emergency requests to vary the IRMS.

The Troubleshooting sub-committee has a clear process for handling requests. The process is detailed on page 67. For further information contact Greg Kauter at Cotton Australia, phone 02 9669 5222.

Principles underlying the IRMS

- 1. Monitor pest and beneficial populations.
- 2. Use recommended thresholds for all pests.
- 3. Monitor fruit retention.
- 4. Comply with all directions for use on product labels.
- 5. Avoid repeated applications of products from the same insecticide group, even when targeting different pests. Rotate between groups.
- 6. Do not respray an apparent failure with the same product or another product from the same insecticide group. Rotate to a different group.
- 7. For all pest species, aim to use the most selective insecticide options first, delaying the use of broad spectrum insecticides for as long as possible.
- 8. Control weeds and cotton volunteers in fields and around the farm all year to minimise pest hosts.
- 9. Pupae bust cotton as soon as possible after harvest.

IRMS Guidelines

Many products used in cotton for insect and mite control are efficacious against more than one important pest. In every population of every pest species there will be a small proportion of individuals with the ability to survive an insecticide. The IRMS aims to assist users to;

- Lower the risks of inadvertent selection of resistance in pests that are not the primary target of the insecticide application.
- Delay the evolution of pest resistance to key chemical groups, by minimising the survival of individuals with resistance.
- Manage entrenched resistance problems, such as the now widespread resistance in cotton aphids to neonicotinoids.

Aphids

Aphids reproduce asexually. All the progeny of a resistant individual will be resistant. Once resistance is selected in a population it can quickly dominate and give rise to new, entirely resistant populations.

While there has been very low use of neonicotinoid insecticides against aphids during recent cotton seasons, resistance in cotton aphids to this insecticide group has become widespread. Resistance has been inadvertently selected in two ways. The first has been through the widespread use of neonicotinoid seed treatments and the second is through the use of foliar applied products targeting mirids.

Even when aphids are present at very low levels, resistance is being selected. All currently available insecticide seed treatments contain a neonicotinoid. Where a seed treatment is used, avoid all early season uses of foliar neonicotinoid products.

There is cross resistance in cotton aphids between pirimicarb and dimethoate/omethoate. Even though these products are in different insecticide groups, the use of one will select for resistance to both.

It is critical that a gap be observed between the early season use of pirimicarb and the late season use of dimethoate/omethoate. Where dimethoate/omethoate is used at the end of one season for late aphid control. be vigilant in controlling cotton volunteers during the winter to minimise the risk of resistant populations being present on farm in the following spring.

When choosing an aphicide, consider previous insecticide choices for mirids as well as for aphids and rotate chemical groups.

COTTON INSECTICIDE RESISTANCE MANAGEMENT STRATEGY - HELICOVERPA, APHIDS & MITES

Cotton IRMS: 2011/12

Explanatory notes for all regions.

Helicoverpa

Pupae busting is a critical tactic in delaying resistance to all insecticides targeting Helicoverpa armigera, including Bollgard II. It is the last line of defence. Individuals that have survived the insecticide selection pressures of the cotton season can be controlled before they have the chance to mate and enrich the starting population of the next season with their resistance.

Pupae busting should be a priority post harvest operation on all cotton farms. The IRMS recommends pupae busting as soon as possible after harvest. For Bollgard II crops, follow the pupae busting directions in the product's Resistance Management Plan, page 81.

Currently the frequencies of resistance to all insecticides for the control of Helicoverpa species in cotton are low.

Mites

There are three species of mite that are commonly found in cotton. Only the two spotted mite causes economic damage and has a history of developing resistance to miticides.

While current resistance levels are low for all products, resistance can be selected very quickly. Avoid consecutive sprays of the same miticide. If mite numbers rebuild after a miticide application, rotate to a product from a different chemical group.

Once cotton is ~8 nodes, thrips cease to be a pest and become veracious predators of mites. Where thrips are preserved, they can provide sustained suppression of mite populations at below damaging levels.

Mirids

Mirids aren't known to have developed resistance to insecticides in Australian cotton. Currently there is no resistance monitoring program for mirids. However it is possible that resistance could develop and the principles underlying the IRMS should be followed in making mirid control decisions.

Many of the products registered for mirid control in cotton are also registered for the control of other pests. It is critical that mirid control decisions also consider sub-threshold populations of other pests that are present in the field.

Using dimethoate/omethoate for the control of mirids can inadvertently select for both dimethoate/omethoate and pirimicarb resistance in aphids. Use of clothianidin (Shield) for mirid control can inadvertently select for imidiacloprid (multiple trade names), acetameprid (Intruder) and clothianidin (Shield) resistance in aphids, as all products belong to the neonicotinoid chemical group.

When selecting an insecticide for mirid control, consider the options that are left open for subsequent aphid control, in case the need arises.

Silverleaf Whitefly (SLW)

SLW is a relatively new pest in cotton. Currently there are only a few products available for its control, each with a very high risk of resistance. Refer to the SLW Threshold Matrix, page 29, for industry recommendations on the best way to utilise the products available with the lowest risk of developing resistance.

To delay the development of resistance, ENSURE ONLY A SINGLE APPLICATION OF ADMIRAL OCCURS WITHIN A SEASON.

SLW has not been incorporated into the IRMS because the use patterns of the available chemistries and the thresholds for the pest require that products be used in windows based on crop growth stage and rate of SLW population growth rather than the use of calendar dates.

The SLW Threshold Matrix is designed to minimise the need to intervene with chemical control as well as to delay the development of resistance.

Cotton IRMS: 2011/12

Explanatory notes for all regions.

IRMS INSECTICIDE & MITICIDE PRODUCT KEY For a full list of trade names, refer to Tables 18–19, pages 40–47.

Active Ingredient (proprietary trade names)	Insecticide Group as shown on the product label	Chemical Group
Helicoverpa viruses (Gemstar, Vivus)	Not a member of a group	Nuclear polyhedrosis virus
Paraffinic Oil (Canopy, Biopest)	Not a member of a group	Petrolium spray oil
Dicofol	Not a member of a group	UN - Unknown mode of action
Amorphous silica (Abrade)	Not a member of a group	Not a member of a group
Aldicarb (Temik	GROUP 1A INSECTICIDE	Carbamates
Carbaryl	GROUP 1A INSECTICIDE	Carbamates
Methomyl	GROUP 1A INSECTICIDE	Carbamates
Pirimicarb	GROUP 1A INSECTICIDE	Carbamates
Thiodicarb	GROUP 1A INSECTICIDE	Carbamates
Chlorpyrifos	GROUP 1B INSECTICIDE	Organophosphates
Dimethoate / Omethoate	GROUP 1B INSECTICIDE	Organophosphates
Methidathion	GROUP 1B INSECTICIDE	Organophosphates
Parathion-methyl	GROUP 1B INSECTICIDE	Organophosphates
Profenofos	GROUP 1B INSECTICIDE	Organophosphates
Alpha-cypermethrin	GROUP 3A INSECTICIDE	Pyrethroids
Beta-cyfluthrin	GROUP 3A INSECTICIDE	Pyrethroids
Bifenthrin	GROUP 3B INSECTICIDE	Pyrethroids
Cypermethrin	GROUP 3B INSECTICIDE	Pyrethroids
Deltamethrin	GROUP 3B INSECTICIDE	Pyrethroids
Gamma-cyhalothrin	GROUP 3B INSECTICIDE	Pyrethroids
Lambda-cyhalothrin	GROUP 3B INSECTICIDE	Pyrethroids
Zeta-cypermethrin	GROUP 3B INSECTICIDE	Pyrethroids
Acetamiprid (Intruder)	GROUP 4A INSECTICIDE	Neonicotinoids
Clothianidin (Shield)	GROUP 4A INSECTICIDE	Neonicotinoids
Imidacloprid (multiple, including seed treatments)	GROUP 4A INSECTICIDE	Neonicotinoids
Thiamethoxam (multiple, including seed treatments)	GROUP 4A INSECTICIDE	Neonicotinoids
Abamectin	GROUP 6 INSECTICIDE	Avermectins
Emamectin (Affirm)	GROUP 6 INSECTICIDE	Avermectins
Pymetrozine (Fulfill)	GROUP 9B INSECTICIDE	Pymetrozine
Etoxazole (Paramite)	GROUP 10B INSECTICIDE	Etoxazole
Foliar Bacillus thuringiensis (Dipel)	GROUP 11 INSECTICIDE	Bt microbials
Diafenthiuron (Pegasus)	GROUP 12A INSECTICIDE	Diafenthiuron
Propargite	GROUP 12C INSECTICIDE	Propargite
Amitraz	GROUP 19 INSECTICIDE	Amitraz
Indoxacarb (Steward)	GROUP 22A INSECTICIDE	Indoxacarb
Spirotetramat (Movento)	GROUP 23 INSECTICIDE	Spirotetramat
Rynaxpyr (Altacor)	GROUP 28 INSECTICIDE	Diamides

COTTON INSECTICIDE RESISTANCE MANAGEMENT STRATEGY - HELICOVERPA, APHIDS & MITES

Source: CropLife Australia Insecticide Resistance Management Review Group, 2010. www.croplifeaustralia.org.au

Cotton IRMS: Northern Region

Belyando, Callide, Central Highlands, Dawson. STOP OVERWINTERING OF RESISTANT POPULATIONS BY PRACTISING GOOD FARM HYGIENE AND CONTROLLING WINTER HOSTS.

Max. 2 all pests³ - NON CONSECUTIVE Max. 2 + PBO & Max. 2 bifenthrin 3,4 Avoid season long use of low rates 4 PUPAE BUST AFTER HARVEST® Max. 2 - beware cross resistance ¹ & CONTROL WINTER HOSTS Max. 2. Ground only. NSW only. Max. 2 - NON CONSECUTIVE 1,2 Do not follow with pirimicarb Max. 3⁴ Max. 4 all pests ⁴ Max. 2 - NON CONSECUTIVE 3 Max. 2 - NON CONSECUTIVE 2 Max. 2 - NON CONSECUTIVE 3 Max. 2 - NON CONSECUTIVE **Excludes Bollgard II refuges** Maximum excludes applications targeting sucking pests, such as pirimicarb and Max. 2 - targeting larvae [±] Max. 3 No restrictions. No restrictions Max. 3 4 Max. 4⁴ Max. 3⁴ Max. 2 Max. 1 Max. 2 decreasing February 15 OPs: methidathion, profenofos, parathion-methy STAGE 4 Carbamates: methomyl, thiodicarb, carbaryl February 1 15 Jan 2012 Neonicotinoids (Amparo, Cruiser, Gaucho, Actara, Confidor, Intruder, Shield) Dimethoate / Omethoate STAGE 3 15 Dec 2011 Indoxacarb (Steward) Note 5: start date = canopy closure Paraffinic Oil (Canopy, Biopest for aphids only) Rynaxpyr (Altacor) When targeting mirids, avoid early season dimethoate / omethoate use as it will select STAGE 2 15 Nov 2011 *Helicoverpa* viruses (Gemstar, Vivus) Foliar *Bacillus thuringiensis* (Dipel) Amorphous silica (Abrade) at planting insecticides Spirotetramat (Movento) Etoxazole (Paramite) Pymetrozine (Fulfill) Emamectin (Affirm) start date = squaring STAGE Abamectin Pirimicarb Aldicarb Phorate decreasing SELECTIVITY **–** Helicoverpa spp. (+ mites for bifenthrin) Helicoverpa spp., Aphids & Mites **NO USE OF STEWARD** Helicoverpa punctigera & Mites **ON CHICKPEAS** Helicoverpa spp., Aphids Helicoverpa spp., Aphids Helicoverpa spp. Aphids & Mites Aphids & Mites Aphids & Mites 16 Sept 2011 Aphids Aphids Aphids Aphids Aphids Mites Mites Mites Note 1:

catastrophic pirimicarb resistance in aphids.

Note 2: Failures of neonicotinoids against aphids have been confirmed. DO NOT follow a seed treatment with a foliar neonicotinoid when aphids are present.

Note 3: Cross check with the Silverleaf Whitelfy Threshold Matrix, page 29. **Note 4:** Maximum 2 consecutive sprays of any one insecticide group, alone or in mixtures.

applications targeting Helicoverpa moths using Magnet.

Note 6: Sprayed conventional cotton crops defoliated after March 9 are more likely to harbour resistant diapausing *Helicoverpa armigera* and should be pupae busted as soon as possible after harvest and no later than the end of August.

Cotton IRMS: Central Region

72

Balonne, Bourke, Darling Downs, Gwydir, Lower & Upper Namoi, Macintyre.

STOP OVERWINTERING OF RESISTANT POPULATIONS BY PRACTISING GOOD FARM HYGIENE AND CONTROLLING WINTER HOSTS.

Max. 2 all pests³ - NON CONSECUTIVE Max. 2 + PBO & Max. 2 bifenthrin 3,4 Avoid season long use of low rates PUPAE BUST AFTER HARVEST® Max. 2 - beware cross resistance & CONTROL WINTER HOSTS Max. 2 - NON CONSECUTIVE 1,2 Max. 2. Ground only. NSW only. Do not follow with pirimicarb Max. 3 4 Max. 4 all pests 4 Max. 2 - NON CONSECUTIVE 3 Max. 2 - NON CONSECUTIVE 3 Max. 2 - NON CONSECUTIVE 2 Max. 2 - NON CONSECUTIVE **Excludes Bollgard II refuges** Note 5: Maximum excludes applications targeting sucking pests, such as pirimicarb and Max. 2 - targeting larvae ⁵ Max. 3 4 No restrictions No restrictions. Max. 4⁴ Max. 3⁴ Max. 3 4 Max. 2 Max. 2 Max. 1 Carbamates: methomyl, thiodicarb, carbaryl Synthetic Pyrethroids, including Bifenthrin STAGE 4 Dimethoate / Omethoate 15 Feb 2012 OPs: methidathion, profen Neonicotinoids (Amparo, Cruiser, Gaucho, Actara, Confidor, Intruder, Shield) Chlorpyrifos February 1 STAGE 3 15 Jan 2012 February 1 start date = canopy closure Paraffinic Oil (Canopy, Biopest for aphids only) Indoxacarb (Steward) December 31 STAGE 2 15 Dec 2011 Foliar Bacillus thuringiensis (Dipel) Rynaxpyr (Altacor) at planting insecticides Amorphous silica (Abrade) Spirotetramat (Movento) Etoxazole (Paramite) Pymetrozine (Fulfill Emamectin (Affirm) start date = squaring STAGE 1 Abamectin Aldicarb December 1 **Pirimicarb** Phorate Dicofo decreasing SELECTIVITY = Helicoverpa spp. (+ mites for bifenthrin) Helicoverpa spp., Aphids & Mites **NO USE OF STEWARD** Helicoverpa punctigera & Mites **ON CHICKPEAS** Helicoverpa spp., Aphids Helicoverpa spp., Aphids Helicoverpa spp. Aphids & Mites Aphids & Mites Aphids & Mites 16 Oct 2011 Aphids Aphids Aphids Aphids Aphids Mites Mites Mites

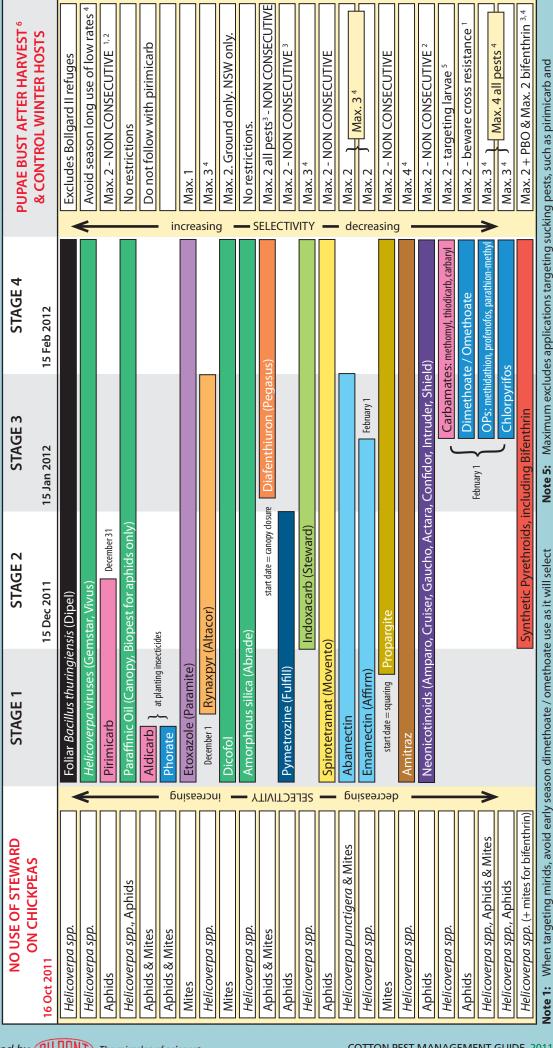
Failures of neonicotinoids against aphids have been confirmed. DO NOT follow a seed treatment with a foliar neonicotinoid when aphids are present. Note 2:

esistant diapausing Helicoverpa armigera and should be pupae busted as soon as possible

after harvest and no later than the end of August.

Sprayed conventional cotton crops defoliated after March 9 are more likely to harbour

Note 6:


applications targeting Helicoverpa moths using Magnet.

- Cross check with the Silverleaf Whitelfy Threshold Matrix, page 29 Note 3:
- Maximum 2 consecutive sprays of any one insecticide group, alone or in mixtures. Note 4:

Cotton IRMS: Southern Region

Macquarie, Lachlan, Murrumbidigee

STOP OVERWINTERING OF RESISTANT POPULATIONS BY PRACTISING GOOD FARM HYGIENE AND CONTROLLING WINTER HOSTS.

- catastrophic pirimicarb resistance in aphids.
- Failures of neonicotinoids against aphids have been confirmed. DO NOT follow a seed treatment with a foliar neonicotinoid when aphids are present. Note 2:
- Maximum 2 consecutive sprays of any one insecticide group, alone or in mixtures. Cross check with the Silverleaf Whitelfy Threshold Matrix, page 29 Note 4: Note 3:
- Note 5: Maximum excludes applications targeting sucking pests, such as pirimicarb and applications targeting Helicoverpa moths using Magnet.
- esistant diapausing Helicoverpa armigera and should be pupae busted as soon as possible Sprayed conventional cotton crops defoliated after March 9 are more likely to harbour after harvest and no later than the end of August. Note 6:

INSECTS

Preamble to the Resistance Management Plan (RMP) for Bollgard II 20011/12

Sharon Downes and Lewis Wilson, CSIRO Kristen Knight, Monsanto Australia Limited Greg Kauter, Cotton Australia Tracey Leven, Cotton Research & Development Corporation

Resistance is the greatest threat to the continued availability and efficacy of Bollgard II cotton in Australia. Even though the Bt proteins in Bollgard II are delivered in the plant tissues, there is still the selection for the survival of resistant individuals. The RMP for Bollgard II was established by regulatory authorities to mitigate the risks of resistance developing to either of the proteins contained in Bollgard II cotton. As it is difficult to be precise about the probability of resistance developing in *Helicoverpa spp.* to the proteins contained in Bollgard II cotton the industry implemented a pre-emptive management plan that aims to prevent field level changes in resistance.

A key component of the RMP for INGARD was a limitation on the area of INGARD cotton that could be planted. This restriction limited selection for resistance to the Cry1Ac protein in INGARD. The industry has so far been able to preserve the efficacy of this gene. When Bollgard II replaced INGARD, the constraint on the area of transgenic cotton was removed. Bollgard II contains both Cry1Ac and Cry2Ab. Computer simulation models of resistance development indicate that it will be more difficult for a pest to develop resistance to both of the insecticidal proteins. However, it is not impossible for *Helicoverpa spp.* to adapt to this technology.

Recent work has shown that for *H. armigera* and *H. punctigera* the assumed baseline frequency of Cry2Ab resistance genes in populations is substantially higher than previously thought. The recent data for *H. punctigera* also demonstrate significant increases over seasons in the frequency of Cry2Ab resistance genes (for more details see below). The continued efficacy of Bollgard II cotton is therefore even more dependent on the effective implementation of the RMP.

The total area of cotton planted in the 2011/12 season is predicted to remain at the large scale that it increased to in 2010–11 and the Bollgard II acreage will still represent around 80% of the total area planted to cotton in Australia. Given the selection pressure exerted by Bollgard II cotton, as well as the high baseline frequency of genes conferring resistance to Cry2Ab in *Helicoverpa spp.* it is critical to abide by the obligations under the RMP.

Future transgenic cottons may also rely on either of the two existing insecticidal genes within Bollgard II. In particular, Monsanto's third generation Bt-cotton, Genuity Bollgard III, will build on the existing Bollgard II cotton platform. Protecting Bollgard II cotton therefore also represents an investment in the protection of future transgenic technology for the Australian cotton industry. If field resistance to Bollgard II cotton were to eventuate it may make it more difficult to market new transgenic products in cotton, and the perceptions of other industries, growers and the public could be unduly affected. Modelling undertaken by CSIRO also suggests that Cry2Ab resistance levels in *Helicoverpa spp.* at the time of introducing Genuity Bollgard

III will directly impact on the requirements for the RMP for that technology. Therefore, it is critical that the industry complies fully and effectively with the RMP for Bollgard II.

The 5 Elements of the Bollgard II RMP

The five elements of the RMP impose limitations and requirements for management on farms that grow Bollgard II. These are: mandatory growing of refuges; control of volunteer and ratoon plants; a defined planting window; restrictions on the use of foliar Bt; and mandatory cultivation of crop residues. In theory the interaction of all of these elements should effectively slow the evolution of resistance.

Your questions answered

How do we test whether the RMP is effective?

To evaluate the effectiveness of the RMP the CRDC funds a program that monitors field populations of moths for resistance to Cry1Ac and Cry2Ab. Work has also commenced on monitoring field populations of moths for resistance to the new *vip3A* gene contained in Genuity Bollgard III technology. Monsanto Australia operates a separate but complimentary monitoring program. The data provides an early warning to the industry of the onset of resistance to Bollgard II and the potential risk of resistance developing to Genuity Bollgard III. The results are used to make decisions about the need to modify the RMP from one season to the next to ensure its ongoing effectiveness at managing resistance. Two sorts of tests are conducted. F₂ screens involve testing the grandchildren of pairs of moths raised from eggs collected from field populations, and therefore take about 10 weeks to run. To increase the number of insects that could be processed during the season, CSIRO developed protocols for testing the frequency of the Cry2Ab resistance gene detected with F₂ screens using a shorter method called an F₁ test. F₁ screens involve testing the offspring of single-pair matings between moths from resistant strains maintained in the laboratory and moths raised from eggs collected from field populations. They take around 5 weeks to conduct.

What is the current situation for Bt resistance in *H. armigera* in Australia?

A gene is present in field populations of *H. armigera* that has the potential to confer high-level resistance to Cry1Ac. CSIRO and Monsanto data suggests that this gene occurs at a low frequency which is probably less than 2 in 10,000 (<0.0002 or 0.02%). This gene does not confer cross-resistance to Cry2Ab and in certain environments is largely recessive. It also has a high fitness cost (i.e. resistant individuals develop slowly and are more likely to die) but this disadvantage is not likely to greatly impact on the development of resistance. In addition, Dr Robin Gunning (DPI NSW) suggests that other resistance mechanisms may be present in *H. armigera*.

A gene that confers high level resistance to Cry2Ab is present in field populations of *H. armigera*. This gene does not confer cross-resistance to Cry1Ac. The most extensively studied colony of insects with this resistance (called SP15) appears to be as fit as susceptible insects. The resistance in such colonies is

RMP INSECTS

recessive. The mechanism conferring resistance to Cry2Ab in *H. armigera* has been shown to be an alteration of a binding site in the gut of the insect.

 $\rm F_2$ tests indicated that the frequency of the gene for resistance to Cry2Ab in 2010–11 was 20 in 1000 (0.02, 2%) or less. In 2004 CSIRO developed protocols for testing the frequency of resistance using a modified and shorter version of the $\rm F_2$ method called an $\rm F_1$ test. This method assumes that the various isolates of Cry2Ab detected so far are of the same kind. These protocols were immediately adopted by Monsanto. During the following two years CSIRO performed experiments which verified that the same mechanism appears to confer resistance in all of the isolates of Cry2Ab detected to date. In 2007/08 CSIRO began $\rm F_1$ tests in H. armigera in earnest.

Results with *H. armigera* show that the estimate of Cry2Ab resistance frequency for F_1 screens is higher than for F_2 tests. Of particular concern is the high frequency of Cry2Ab resistance genes which at the end of the 2010–11 season is approximately 3 in 100 (0.03, 3%). Currently, we believe that the frequencies obtained from the F_1 screens are likely to most accurately reflect the situation in the field. Both Monsanto and CSIRO are working together to better understand the differences between the F_2 and F_1 screens.

What is the current situation for Bt resistance in *H. punctigera* in Australia?

Before 2008/09 more than 4000 genes from *H. punctigera* had been screened and none had scored positive for resistance to Cry1Ac. However, in 2008/09 a gene was isolated from field populations of *H. punctigera* that confers resistance to Cry1Ac. F₂ tests indicate that the frequency of this gene in 2009/10 was less than 1 in 1000 (0.001, 0.1%). It is not cross-resistant to Cry2Ab. Researchers are currently attempting to establish a colony containing this gene for further characterisation.

A gene that confers high level resistance to Cry2Ab is present in field populations of *H. punctigera*. This gene does not confer cross-resistance to Cry1Ac. The most extensively studied colony of resistant insects (called Hp4–13) demonstrates the same

broad characteristics as the SP15 strain of Cry2Ab resistant H. *armigera*. The resistance is recessive, occurs at a high level, and is due to an alteration of a binding site in the gut of the insect. F_2 tests indicated that the frequency of this gene in 2010–11 was 9 in 1000 (0.009, 0.9%) or less.

In 2007/08 and 2009/10 CSIRO and Monsanto respectively began F_1 tests in H. punctigera. As with H. armigera, the Cry2Ab resistance frequency in H. punctigera for F_1 screens is higher than that determined with the F_2 tests. At the end of the 2010–11 season, the frequency of Cry2Ab genes in H. punctigera was approximately 2 in 100 (0.02, 2%).

Why is there a high baseline frequency of *cry2Ab* genes in field populations?

The high frequency of individuals carrying the *cry2Ab* resistance gene in field populations is unexpected because, until the widespread adoption of Bollgard II, there has presumably been little exposure of *Helicoverpa spp.* to this toxin and therefore little selection for resistance. Although the Cry2Ab toxin from Bt is present in some Australian soils, it is not common. In contrast, the Cry1Ac toxin is far more common in Australian soils, yet resistance to this toxin in *Helicoverpa spp.* is rare. Mutations that confer resistance to Cry2Ab may occur in field populations of *Helicoverpa spp.* at a very high rate. Collection of *H. punctigera* moths from inland regions were made in winter 2009 to see if these populations, which would have little exposure to Bollgard II, carry resistance to Cry2Ab. $\boldsymbol{F}_{\scriptscriptstyle{1}}$ screens conducted by CSIRO on these populations show they carry the same Cry2Ab resistance gene present in the cropping areas but at a much lower frequency of 5 in 1000 (0.005, 0.5%) compared to a sample from cropping populations collected at the same time (5 in 100, 0.05, 5%). We do not have an F_1 resistance frequency for Cry2Ab in H. punctigera prior to the widespread adoption of Bollgard II.

Is the frequency of *cry2Ab* genes increasing in field populations of *H. armigera*?

F₂ data for *H. armigera* do not demonstrate a statistically significant change in frequency of Cry2Ab resistance over time. Since 2004/05 Monsanto has used the F₁ protocol developed by CSIRO to screen for resistance to Cry2Ab. CSIRO also has F₁ screen data for *H. armigera* since 2007/08. Despite both organisations utilising identical robust protocols, and sampling from the same hosts and regions, the frequencies scored by Monsanto are lower than those scored by CSIRO. Since the difference is not consistent among data sets it is not possible to apply a simple correction. Both data sets analysed independently show that there is no significant difference in the frequencies of Cry2Ab resistance alleles over the longer term, although the frequencies in 2010-11 are statistically higher than in previous years. Irrespective of changes through time the frequencies of Cry2Ab in H. armigera are higher than expected and this finding is a concern (see above).

Is the frequency of *cry2Ab* genes increasing in field populations of *H. punctigera*?

At the end of 2008/09 the $\rm F_2$ and $\rm F_1$ data sets from CSIRO demonstrated significant increases in the frequency of cry2Ab resistance genes in field populations of H. punctigera. CSIRO began collecting $\rm F_2$ screen data for H. punctigera in 2002/03. Each year since 2006/07 there has been an increase in the frequencies of resistance to Cry2Ab. This gradual increase over time became statistically significant in 2007/08 and

INSECTS

remained highly significant in 2008/09. The 2010–11 CSIRO data demonstrate a Cry2Ab resistance frequency which is not significantly different from the frequency obtained in 2008/09. While the 2009/10 and 2010–11 data do not follow the exponential growth curve that was fitted at the end of 2008/09, the complete data set shows a highly significant linear increase over time. Monsanto began $\rm F_2$ screens with $\it H.~punctigera$ in 2007/08 and in 2010–11 detected a Cry2Ab resistance frequency that was significantly higher than in previous years. However, this may have been an overestimate in frequency as all positives were from one larval collection.

The 2008/09 F_1 data set for *H. punctigera* demonstrated a 5 fold increase in frequency compared to 2007/08. The frequencies obtained in 2009/10 and 2010–11 are lower than those detected in 2008/09. The shifts in F_1 screen data from 2007/08 to 2010–11 mirror those of the F_2 screen data, however since the data set is restricted to the last three years only, it is not possible to look for longer term shifts over time.

Why is *H. punctigera* developing resistance to Cry2Ab when it has no history of resistance to insecticide sprays?

H. punctigera has the capacity to develop resistance to insecticide sprays but it has been presumed that any resistance selection in cotton regions was kept in check by dilution from susceptible immigrants from central Australia each spring. There may be some recent changes to the ecology of H. punctigera that could impact on their ability to develop resistance including a greater tendency to overwinter in cotton regions and less immigration of inland individuals than in the past due to low rainfall inland. The decline in Cry2Ab resistance frequencies in H. punctigera in 2009/10 may reflect some dilution due to immigration of inland individuals but this hypothesis is difficult to test.

What is known about resistance to Vip3A protein in *H. armigera* and *H. punctigera*?

Monitoring for resistance to Vip3A protein is in its infancy however genes allowing survival against this toxin have been isolated in *H. punctigera* and *H. armigera*. The early data obtained by CSIRO suggest that the frequency of *vip3A* resistance genes in *H. punctigera* is around 1 in 100 (0.01, 1%).

This estimate is based on both F_2 screens and F_1 screens; unlike the situation for Cry2Ab, there is no significant difference among the frequencies obtained with both methods and therefore the frequency reported is from the pooled data. At this early stage the frequencies of vip3A resistance alleles in H. armigera obtained from F_2 screens are significantly higher than those for H. punctigera, at 3 in 100 (0.03, 3%). Therefore, as with Cry2Ab, the early data indicate that there is an unexpectedly high frequency of individuals in field populations that carry a gene conferring resistance to Vip3A protein. In 2010–11 Monsanto began screens for vip3A resistance genes in both Helicoverpa spp. but have not detected any positives.

Is the current RMP adequate for controlling further increases in resistance frequencies?

There have been no reported field failures of Bollgard II due to resistance. However the finding of a higher baseline frequency of cry2Ab genes using F_1 tests than previously detected using F_2 screens is a major concern. Of even more concern is the demonstrated significant increase in Cry2Ab resistance frequency in H. punctigera. It is imperative that all users of Bollgard II steward the technology responsibly. In particular, it is critical that closer attention is paid to managing Bollgard II cotton associated refuges and that effective pupae busting occurs in a timely fashion.

In addition, Monsanto and the TIMS Bt Technical Panel are developing a working document entitled 'Contingency Plan for Mitigating Resistance to the Toxins Within Bollgard II Cotton' which will provide background information and recommendations for Monsanto and the Cotton Australia convened TIMS Committee. This document includes possible measures to be taken in response to further increases in resistance frequencies to the Cry2Ab toxin in Bollgard II cotton by *Helicoverpa spp.* to mitigate the risk of levels being attained that would lead to field failures. Once finalised the contingency Plan will be reviewed annually in light of new information on resistance frequencies in Helicoverpa spp. and knowledge of and tactics for Bt resistance management. Note that the RMP will continue to be the document that informs growers of their responsibilities in managing Bollgard II cotton while the contingency plan will contain other mitigation strategies that may be introduced into the RMP.

1. Refuges

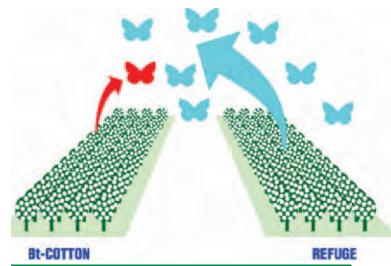
What is the purpose of refuges?

The aim of refuge crops is to generate significant numbers of susceptible moths (SS) that have not been exposed to selection pressure from the Bt proteins. As detailed above, this production is especially critical in a drought year because there is reduced contribution from non-cropping vegetation and dryland crops. Moths produced in the refuge crops will disperse to form part of the local mating population where they may mate with any potentially resistant moths (RR) emerging from Bollgard II crops. This reduces the chance that resistant moths will meet and mate. The offspring from matings between one resistant and one susceptible moth will carry one gene from each parent (RS) and are referred to as heterozygotes. In the cases of Bt resistance that have so far been identified, heterozygotes are still controlled by Bollgard II cotton. Therefore, the critical function of the refuge is to dilute the frequency of RR individuals within the population. It is crucial that the timing of the production of moths from refuges RMP INSECTS

matches that of Bollgard II crops. While the use of planting windows and use of two Bt genes in Bollgard II cotton are aimed at reducing selection pressure for Bt resistance, the use of refuge crops is to try to balance or counter the selection that will still occur.

How were the current requirements for refuge crops determined?

The relative sizes of refuge crops required in the RMP are based on models and knowledge of Helicoverpa moth emergence for different crop types. The likely moth productivity of the different refuge options has been determined through largescale field experiments conducted by researchers within the Cotton CRC over several seasons. Only refuge options that have been assessed in this way are currently approved by the APVMA. In these experiments, a refuge of 10% unsprayed cotton was considered as the reference point. On average pigeon pea produced twice as many moths as the same area of unsprayed cotton, hence a 5% refuge, half that of an unsprayed cotton refuge, is required for this crop. Initially, sorghum and corn were included as refuge options in the RMP because they were effective at producing H. armigera moths. However, since they are not a preferred host for *H. punctigera*, from 2010–11 sorghum and corn were removed from the RMP as refuge options.


Is there a minimum size to a refuge crop?

Where sprayed conventional cotton is grown on the farm unit, each refuge crop must be at least 48 metres wide and a minimum of 2 hectares. This is to minimise the risk of spray drift onto the refuge, as this would decrease the effectiveness of the refuge in producing moths.

If no sprayed conventional cotton is grown on the farm, the minimum size of a refuge must be 24 metres wide and 24 metres long. Sprayed and unsprayed refuges must be planted separately.

Can mixtures of the refuge crop options be used to meet the refuge requirements?

It is possible to combine more than one type of refuge, provided that the total requirements for area equivalence are met. For example, 1 hectare of pigeon pea can be grown alongside 1 hectare of unsprayed cotton, rather than 2 hectares of either. Each type of refuge must be managed so that it is productive and other restrictions on minimum dimensions, number of plantings and location also need to be met. However, sprayed and unsprayed refuge options cannot be mixed in the same field. For example, it would not be acceptable to use 1 hectare of pigeon pea grown alongside 30 hectares of sprayed cotton as a substitute for 2 hectares of pigeon pea.

Moths produced from refuges dilute resistance genes in the population.

Why can't a conventional crop from a neighbouring property act as a refuge?

In some cases, a conventional crop grown on a neighbouring property may satisfy the requirements of a refuge for Bollgard II. However, the crop may not be managed in a way that complies with the RMP. Since growers cannot control the management of a neighbour's crop, it is not sensible to rely on these areas as refuges for Bollgard II.

Why do the refuge options differ for dryland Bollgard II and irrigated Bollgard II?

For dryland Bollgard II crops the only available dryland refuge options are sprayed or unsprayed cotton. The reason for this is that the other refuge option available in irrigated Bollgard II (pigeon pea) tends to be planted after the cotton and it's a requirement that dryland refuges must be planted within the 2 week period prior to the first day of planting Bollgard II cotton. However CSIRO and Monsanto have conducted work on the suitability of pigeon pea as a dryland conventional cotton treated and not treated by slashing as a potential refuge option. There are also irrigated refuge options for dryland Bollgard II cotton. These options are sprayed or unsprayed irrigated cotton and unsprayed irrigated pigeon pea, and were chosen because to date they have been the most widely adopted refuges for irrigated Bollgard II.

How can the 'effectiveness' of an individual refuge be evaluated?

The productivity of refuges will vary considerably across regions and seasons. It is not possible to place a value on the effectiveness of each refuge. Looking after refuges, including nutrition, weed control, timely irrigation and all factors that make the refuge 'attractive' to female moths laying eggs, is the key to ensuring that they are effective. Managing resistance is a population level activity, and every refuge makes an important contribution to the overall RMP for the valley, and because *Helicoverpa spp.* disperse widely, on a larger scale for the whole industry. Especially during a drought season it is imperative that all refuges produce their quota of susceptible (SS) moths. Monsanto audits the quality of refuges on every farm that grows Bollgard II to ensure that they are well maintained and effective.

Why is the location of refuge crops important?

For the refuge principle to be successful, refuge crop areas must be in close proximity to the Bollgard II crop(s) to ensure that it INSECTS

is highly likely that moths emerging from the Bollgard II will mate with susceptible moths from the refuge crop. Helicoverpa moths are capable of migrating long distances, but during the summer cropping season a significant part of the population may remain localised and move only a few kilometres within a region. The level of movement will depend on the mix of crops and their attractiveness at the time of moth emergence. For this reason the best location for a refuge crop is close as possible to the Bollgard II crop, at least within 2 km.

Is there an alternative to growing refuges for resistance management?

No, though alternatives are being investigated. It is important to recognise that the costs associated with refuge crops are an investment in the longer term value of transgenic technology for the industry. The costs associated with growing an attractive refuge should be considered as an integral part of growing Bollgard II.

2. Volunteers

Why is it important to control conventional cotton volunteers or ratoon plants in Bollgard II?

In terms of the RMP, it is important to prevent the establishment of conventional cotton in Bollgard II fields because larger larvae that have grown on conventional cotton plants are moderately tolerant to Bt. If large larvae migrate to neighbouring Bt plants, those that are heterozygotes (RS) may survive and contribute to increasing the frequency of resistance genes in the *Helicoverpa spp.* population. In the cases of Bt resistance that have so far been identified, heterozygotes are controlled by Bollgard II cotton. By removing conventional volunteers from Bollgard II fields, heterozygotes will have no opportunity to grow large enough to be able to tolerate Bt plants and therefore contribute their resistance genes to the next generation of moths.

Why is it important to control Bollgard II volunteers or ration plants in conventional cotton?

The same logic applies as in the previous question. The presence of Bollgard II volunteer plants in a conventional crop exerts a selection pressure for Bt resistance. Heterozygous (RS) larvae that emerge from eggs laid on conventional cotton may grow and during their development move onto Bollgard II volunteers. In this way RS larvae become exposed to Bt at later growth stages when they can survive to produce offspring. This will lead to an increase in the frequency of resistant individuals (both RS and RR) in the population. If the field happens to be designated as a refuge crop, the presence of the Bollgard II volunteers will diminish the value of the refuge.

3. Planting windows

Why do we need a Bollgard II planting window?

The purpose of restricting the planting window is to limit the number of generations of *H. armigera* that will be exposed to Bollgard II in any one season. This measure effectively restricts the selection pressure on *H. armigera* to develop resistance to Bollgard II.

Is it possible to vary the Bollgard II planting window?

Where exceptional circumstances exist, requests for a variation to the planting window will be considered. In the past Monsanto approached the APVMA on behalf of a grower or Cotton Grower's Association to consider requests. From

2006/07 onwards, the TIMS Committee will consider requests. Requests must satisfy a number of criteria as outlined in the 'Request for variation to the Bollgard II planting window' document, found on page 80. If a request is approved, the variation only affects the planting window component of the RMP for the requestee/s for the current season. All other components of the RMP remain the same.

4. No Bt sprays

Why is it important that foliar Bt sprays are not used on refuges?

By preventing the use of foliar Bt on all refuges (sprayed and unsprayed), the likelihood of producing moths that are susceptible (SS) rather than resistant (RR) to Bt is maximised. This is an important part of the RMP because susceptible refuge moths are presumed to mate with any resistant moths in the population to produce heterozygotes (RS) that are killed by Bollgard II.

With regard to refuge crops, what does the term 'unsprayed' mean?

The term 'unsprayed' encompasses all management activities which are likely to reduce the survival of Helicoverpa in these crops. Insecticides with activity against Helicoverpa cannot be used in unsprayed refuges. Food sprays cannot be used in unsprayed refuges as these aim to reduce Helicoverpa survival through increased predation and parasitism. Similarly, Trichogramma and other biolocial control agents cannot be released in unsprayed refuges as they too aim to reduce Helicoverpa survival.

5. Pupae destruction

Given that few larvae survive in Bollgard II, why is it important to pupae bust?

Cultivating between seasons prevents any moths that developed resistance in the previous year from contributing to the population in the following year. Although we expect few larvae to survive in Bollgard II, those that do are most likely resistant and these are precisely the ones that must be killed so that the next generation of moths (emerging the following spring) are not enriched with resistant individuals. This is especially the case in a drought year because of the increased opportunity for 'resistance genes' to increase in frequency.

Am I required to pupae bust in my refuges?

Refuges must produce moths during the cotton season when Bollgard II is grown but unsprayed refuges can continue to provide benefits for resistance management by being left in place until the following spring. By doing this any pupae produced in the autumn may be carried over the spring and provide additional genetic dilution of resistant survivors. Once Bollgard II crops begin flowering and are highly attractive to Helicoverpa moths, the corresponding refuge should not be cultivated (e.g. for weed control, row formation etc).

Why are there requirements for trap cropping in central Queensland?

In central Queensland *Helicoverpa spp.* pupae produced late in the cotton season do not remain in the soil, but emerge within 15 days of pupating. Pupae busting is not an effective resistance management tool in these warmer areas and trap crops are required as an alternative. Trap crops of pigeon peas are planted after the cotton and are timed to be at their most attractive after

RMP INSECTS

the cotton has cut-out. Thus moths emerging from Bollgard II cotton fields at the end of the season will be attracted to the trap crops and are likely to lay their eggs in the trap crop. The egg and larval stages can last 30+ days. Once the cotton has been harvested, the trap crop should be destroyed, removing the food source from the larvae (which will then die) and the soil then cultivated to destroy any pupae. It is critical to time the destruction so that it corresponds with the period of most effective kill of the range of life stages of Helicoverpa. See the 2010–11 RMP for more details.

Guidelines for Helicoverpa management in Bollgard II cotton

Since 2005/06 there have been occasional reports of larvae surviving for several weeks at threshold levels in Bollgard II fields. All affected fields were at mid-flowering to late-flowering and the survivors included *H. armigera* and *H. punctigera*. Work conducted by CSIRO and Monsanto demonstrated that these larvae did not survive on Bollgard II due to Bt resistance or because of the absence of Bt genes in the cotton. Recent work suggests that larvae exhibit strong behavioural responses to the Bt proteins in Bollgard II plants. Detection and avoidance of the Bt toxins results in frequent movement of larvae, potentially within and between plants, resulting in an apparent feeding preference for flowers. These behaviours, coupled with the sometimes temporal and spatial variability of Bt toxin expression in Bollgard II cotton, can result in a proportion of larvae becoming established.

For resistance management reasons, it is recommended that if larvae reach thresholds in Bollgard II fields they should be controlled by spraying. However work conducted by Monsanto suggests that it is unlikely that there will be a yield penalty associated with larvae survival in Bollgard II fields. This is supported by a recent study that used the distribution of larval damage in fields that carried larvae at the current thresholds as the basis for an artificial damage experiment. The work showed that Bollgard II plants could tolerate up to 100% square loss at early flowering, up to 100% square removal alone or in combination with 30% boll damage at peak flowering, and 30% boll damage at late flowering, without impacting yield or quality. Therefore Bollgard II cotton seems to compensate well for damage caused by larvae and the current threshold can be used in most situations without causing significant yield reduction.

With the increased risk of resistance to Cry2Ab in Helicoverpa it is critical that we monitor the distribution and proportions of fields that are affected by surviving larvae, and the number of fields that are sprayed to control Helicoverpa. Part of the end of season general survey of CCA members includes questions about control of Helicoverpa in Bollgard II fields.

If you experience above threshold levels of Helicoverpa in your Bollgard II fields please immediately contact:

- Sharon Downes: 02 6799 1576/0427 480 967; or,
- Kristen Knight 07 4634 8400/0429 666 086.

Collection kits are also available from your Regional Cotton Extension Officer.

Insecticide selection for Bollgard II crops

When controlling Helicoverpa within Bollgard II crops, insecticide selection should comply with the cotton industry's Insecticide Resistance Management Strategy (pages 68–73). The

predator/pest ratio (described on page 11) should also be given careful consideration when the application of an insecticide is being considered. If an insecticide is required, try to choose the most effective product that is the least disruptive to the beneficial complex. Refer to pages 8–9. While foliar Bt can be used on Bollgard II crops, it is a requirement of the Bollgard II Resistance Management Plan that foliar Bt not be used on any refuge crops.

Helicoverpa thresholds

Do not include any larvae <3 mm long in spray threshold counts. For economic management of Helicoverpa, larval populations should be controlled with an insecticide if a threshold of:

- 2 larvae /m >3 mm long are found over 2 consecutive checks; or,
- 1 larvae /m >8 mm long is found in any check.

Application of these thresholds requires careful and accurate assessment. Checks should be made over the whole plant including the terminals, squares and especially flowers and small bolls. Be sure to objectively assess larval size. A complete description of the sampling protocols for Helicoverpa can be found on page 10.

GUIDELINES FOR AMENDING BOLLGARD II PLANTING WINDOWS 2011/12

Developed by the Transgenic and Insect Management Strategies Committee of Cotton Australia

Note: Requests for variation to the Bollgard II planting window only affect the planting window component of the RMP for the requestee/s for the current season.

Planting Windows in the Bollgard II RMP are the key element in the strategy for restricting the number of generations of *Helicoverpa spp.* exposed to Bollgard II in a region. This is necessary to limit the rate of evolution of resistance to Bt toxins. These guidelines allow a degree of flexibility to accommodate unforseen circumstances without jeopardising this objective.

The TIMS Committee will only consider requests for a variation to the planting window in situations in which exceptional circumstances exist (emergencies).

If the request is accepted and agreed to by the TIMS committee then a 'Bollgard II Planting Window Variation Notice' will be issued by Monsanto. This variation only affects the planting window component of the Resistance Management Plan (RMP). All other components of the RMP remain the same.

Process

Monsanto is responsible for the issuing of a 'Bollgard II Planting Window Variation Notice' under the APVMA Notice of Variation of Registration of Agricultural Product – Bollgard II cotton (March 23, 2006).

Cotton growers who wish to request a variation to Bollgard II planting window dates for them or their region will need to make a formal request to the TIMS Committee who will make a written recommendation to Monsanto. The request must be in writing from their local CGA and received where possible, by the end of the first week of September.

It is essential that there has been wide consultation regarding the proposal including; CGA members, local consultants, Regional Cotton Officers and researchers and the local Monsanto Accounts & Stewardship Specialist. Requests that are supported by TIMS will be approved by Monsanto. The Variation Notice will be communicated to relevant organisations and individuals by TIMS and Monsanto.

Criteria for assessing the application to change a planting window:

- 1. The local Cotton Growers Association (CGA) must request and approve the change with a majority vote and advise all growers of the outcome of the vote. The majority decision affects TUA compliance for all licensed growers. Evidence of this process will be required from the CGA in writing together with the information requested below.
- 2. The region (or individual grower) requesting the variation is more than 100 kms from any other significant Bollgard II planting.
- 3. Planting of Bollgard II in the region has not exceeded 10% of the anticipated Bollgard II cotton area.
- 4. No Bollgard II cotton has been planted in excess of 21 days prior to the opening of the new window.
- 5. There are no known threats to the efficacy of refuges in the region (e.g., plague locust pressure).
- 6. The requested planting window variation must be a 42 day window that falls entirely within the period September 1 to December 15.

Essential information to be submitted with a request for a Bollgard II planting window variation:

- 1. Describe the reasons for the request.
- 2. Proposed new window start and finish dates.
- 3. Map or description of the region concerned.
- 4. Distance of the relevant region to nearest neighbouring cotton.
- 5. Time of first Bollgard II cotton planted in the region.
- 6. Area of Bollgard II already planted in the region.
- 7. Projected total area to be planted to Bollgard II in the region.
- 8. Statement confirming approval and agreement of all cotton growers in the region to abide by the requested changes to the window.
- 9. Statement acknowledging capacity to still meet pupae busting requirements in the RMP when a later planting window is requested.

Registered trademark of Monsanto Company LLC

RMP

SCHEDULE A – RESISTANCE MANAGEMENT PLAN FOR BOLLGARD II COTTON 2011/12

Developed by Monsanto Australia Limited and the Transgenic and Insect Management Strategy (TIMS) Committee of Cotton Australia Ltd.

The resistance management plan is based on three basic principles: (1) minimising the exposure of *Helicoverpa* spp. to the *Bacillus thuringiensis* (Bt) proteins Cry1Ac and Cry2Ab; (2) providing a population of susceptible individuals that can mate with any resistant individuals, hence diluting any potential resistance; and (3) removing resistant individuals at the end of the cotton season. The three principles are supported through the implementation of 5 elements that are the key components of the Resistance Management Plan. These elements are:

- 1. Refuge crops;
- 2. Planting window;
- 3. Pupae busting/Trap crops;
- 4. Control of volunteers and ratoon cotton; and,
- 5. Spray limitations.

Growers of Bollgard II cotton are required to practice preventative resistance management as set out below.

Compliance with the Resistance Management Plan is required under the terms of the Bollgard II Technology User Agreement and under the conditions of registration (*Agricultural and Veterinary Chemicals Act 1994*).

Section 1 is applicable to all regions in New South Wales and Queensland that grow cotton while sections 2 and 3 detail specific requirements for New South Wales and Southern Queensland, and Central Queensland respectively.

New South Wales, Southern Queensland & Central Queensland

1. Refuges

Growers planting Bollgard II cotton will also be required to grow a refuge crop that is capable of producing large numbers of *Helicoverpa spp*. moths which have not been exposed to selection with Bt proteins Cry1Ac and Cry2Ab. These unselected moths are expected to dominate matings with any survivors from Bollgard II crops and thus help to maintain resistance to Bt proteins Cry1Ac and Cry2Ab at low levels.

All refuge options are based on the requirement of a 10% unsprayed cotton refuge or its equivalent, as determined by the relative production of *Helicoverpa spp*. from each of the refuge types as described in Tables 1 and 2, for irrigated and dryland production scenarios respectively. Irrespective of the irrigation regime for the Bollgard II cotton, all pigeon pea refuges must be fully irrigated so that they are attractive to *Helicoverpa spp*. during the growing period of the Bollgard II cotton.

Registered trademark of Monsanto Company LLC

For each area of irrigated Bollgard II cotton planted, a grower is required to plant a minimum of one or a combination of the following:

TABLE 1: Irrigated Bollgard II cotton refuge options					
Crop Conditions % of Bollga					
Cattain	Irrigated, sprayed conventional cotton	100			
Cotton	Irrigated, unsprayed conventional cotton	10			
Pigeon pea	Fully irrigated, unsprayed	5			

TABLE 2: Dryland Bollgard II cotton refuge options					
Crop	Conditions	% of Bollgard II			
Cattan	Dryland or irrigated, sprayed conventional cotton	100			
Cotton	Dryland or irrigated, unsprayed conventional cotton	10			
Pigeon pea	Fully irrigated, unsprayed	5			

No other refuge options are approved for dryland Bollgard II.

Note: Unsprayed means not sprayed with any insecticide that targets any life stage of *Helicoverpa* spp.

Bt products must not be applied to any refuge (including sprayed cotton).

If the viability of an unsprayed conventional cotton refuge is at risk due to early season pressure by *Helicoverpa spp.*, and with prior approval from the Monsanto Compliance and Stewardship Manager, a non-Bt heliocide can be applied up to the 4th true leaf stage. An unsprayed refuge should not be planted in the same field as any crop sprayed with a rate of insecticide that is registered for Helicoverpa spp, with the exception of Bollgard II. Sprayed crops and unsprayed refuges that are planted in adjacent fields must be separated by sufficient distance to minimise the likelihood of insecticide drift onto the unsprayed refuge.

For the purposes of this Resistance Management Plan, conventional cotton includes any cotton varieties that do not have Bt proteins in the plant that control *Helicoverpa spp.* moths.

SCHEDULE A – RESISTANCE MANAGEMENT PLAN FOR BOLLGARD II COTTON 2011/12

New South Wales, Southern Queensland & Central Queensland (continued)

General conditions for all refuges:

(a) Refuge crops are to be planted and managed so that they are attractive to *Helicoverpa* spp. during the growing period of the Bollgard II cotton varieties.

Irrigated: It is preferable that all refuge is planted within the 2 week period prior to planting Bollgard II. If this is not possible, refuge planting must be completed within 3 weeks of the first day of sowing of Bollgard II. At this time, sufficient refuge must have been planted to cover all of the Bollgard II cotton proposed to be planted for the season (including Bollgard II already planted and any that remains unplanted). Should additional Bollgard II planting be made after this date, which is not already covered by refuge, additional refuge must be planted as soon as possible and no more than 2 weeks after sowing of the additional Bollgard II.

Dryland: A dryland refuge must be planted within the 2 week period prior to the first day of planting Bollgard II cotton.

- (b) Pigeon pea refuges should not be planted until the soil temperature reaches 17°C, which is a requirement for germination, and should also be planted into moisture to ensure successful germination. If soil temperatures are not suitable to allow germination of pigeon peas in line with condition (a), an alternative refuge must be planted in its place within the prescribed period (under (a) above).
- (c) Once Bollgard II cotton begins to flower the corresponding refuge should not be cultivated.
- (d) Insecticide preparations containing Bt may be used on Bollgard II cotton throughout the season BUT NOT on any refuge crops.
- (e) All refuges are to be planted within the farm unit growing Bollgard II cotton. Subject to clause (f) below, all reasonable effort should be taken to plant the refuge either on one side of, or next to a Bollgard II cotton field and all Bollgard II fields must be no more than 2 km from the nearest associated Bollgard II refuge.
- (f) To minimise the possibility of refuge attractiveness being affected by herbicide drift, non-herbicide tolerant refuges should be separated from herbicide tolerant Bollgard II cotton crops by a sufficient distance to minimise such drift, but no more than 2km from the Bollgard II cotton.
- (g) To account for possible insecticide drift, the options for the width of refuge crops vary according to spray regime. If any sprayed conventional cotton is grown on the same farm unit, Bollgard II refuge crops must be at least 48 metres wide and each refuge area must be a minimum of 2 hectares. If no sprayed conventional cotton is grown on the same farm unit, Bollgard II refuge crops must be at least 24 metres wide and 24 metres long. Different unsprayed refuge options may be planted in the same field as a single unit; however a sprayed conventional cotton refuge must not be planted in a field that is also planted to an unsprayed refuge type.
- (h) In all regions, destruction of refuges should only be carried out after Bollgard II cotton lint removal has been completed.
- (i) Refuges for dryland Bollgard II cotton crops must be planted in the same row configuration as the Bollgard II crop unless the refuge is irrigated. If an irrigated option is utilised for a dryland Bollgard II crop, then that refuge may be planted in a solid configuration. Dryland cotton is measured as green hectares (calculated as defined in the Technology User Agreement).

2. Control of volunteer and ratoon cotton

Volunteer and ratoon cotton may impose additional selection pressure on *Helicoverpa spp.* to develop resistance to the Bt Cry1Ac and Cry2Ab proteins produced by Bollgard II cotton.

Growers must make all reasonable efforts to remove volunteer and ratoon plants, as soon as possible from all fields, including fallow areas, Bollgard II crops, conventional cotton crops and all refuges. The presence of Bollgard II volunteers/ratoon cotton in any refuge will diminish the value of the refuge and must be removed as soon as possible.

Note: The refuge should preferably be planted into fallow or rotation fields that have not been planted to cotton in the previous season.

3. Post-harvest crop destruction

As soon as practical after harvest, Bollgard II cotton crops must be destroyed by cultivation or herbicide so that they do not continue to act as hosts for *Helicoverpa spp*.

Section 2: New South Wales & Southern Queensland only

1. Planting windows

All Bollgard II crops are to be planted into moisture or watered-up by 15 November, unless otherwise advised by a Bollgard II Planting Window Variation Notice.

2. Pupae destruction

In Bollgard II cotton fields, each grower will be required to undertake *Helicoverpa spp*. pupae destruction after harvest according to the following key guidelines

- Bollgard II crops should be slashed or mulched and fields cultivated for pupae control within 4 weeks of harvesting. All pupae busting must be completed by July 31.
- Ensure disturbance of the whole soil surface to a depth of 10 cm.
- All fields that are sown to any winter crop following a Bollgard II crop must be inspected by the Technology Service Provider before sowing commences in order to ensure that pupae busting has occurred.

SCHEDULE A – RESISTANCE MANAGEMENT PLAN FOR BOLLGARD II COTTON 2011/12

New South Wales, Southern Queensland & Central Queensland (continued)

In Refuge crops:

In New South Wales and Southern Queensland, to ensure maximum emergence of late pupae from associated refuges, soil disturbance of refuge crops should not be undertaken until after the pupae busting in Bollgard II cotton crops on the farm unit is complete. All unsprayed refuges, should preferably be left uncultivated until the following October.

3. Failed crops

Bollgard II crops that will not be grown through to harvest for various reasons and are declared to, and verified by, Monsanto as failed must be destroyed within two weeks after verification, in such a way that prevents regrowth. Crops abandoned before February 28 do not require pupae busting. Crops abandoned on February 28 or later must be pupae busted.

NB: If any grower encounters problems in complying with the Resistance Management Plan please contact your local Monsanto Regional Business Manager.

Section 3: Central Queensland only

1. Planting Windows

Emerald: All Bollgard II crops are to be planted into moisture or watered-up in the period between September 15 and October 26, unless advised otherwise by a Bollgard II Planting Window Variation Notice.

Dawson Callide Valleys: All Bollgard II crops are to be planted into moisture or watered-up in the period between September 15 and October 26, unless advised otherwise by a Bollgard II Planting Window Variation Notice.

Belyando: All Bollgard II crops are to be planted into moisture or watered-up in the period between October 10 and November 20, unless advised otherwise by a Bollgard II Planting Window Variation Notice.

2. Refuges

Pigeon Pea refuge should preferably be planted into a fallow or rotation field that has not been planted to cotton in the previous season to avoid volunteer and ratoon cotton.

In Central Queensland soil disturbance of refuge crops can only occur 2 weeks after final defoliation of the Bollgard II cotton.

3. Late summer pigeon pea trap crop

A late summer trap crop (pigeon pea) must be planted for all Bollgard II cotton grown in Central Queensland. The planting configuration of the trap crop should be the same as that of the Bollgard II crop.

Irrigated Bollgard II must have an irrigated trap crop. Table 2 shows the requirements for the late summer pigeon pea trap crop. Dryland Bollgard II growers who do not have any irrigated cotton on their farm should contact their Monsanto Regional Business Manager for alternative options.

Refuge and late summer trap crops have different purposes and, if pigeon pea is selected for both, two separate plantings may be required. However, where a pigeon pea refuge is utilised as a trap crop the full 5% pigeon pea refuge area must be managed to become the late summer trap crop and must adhere to the requirements in Table 3 below.

Criterion	Trap crop*
Minimum area & dimension (Requirement)	A minimum trap crop of 1% of planted Bollgard II cotton crop is required.
	If sprayed conventional cotton is grown on that farm unit: the trap crop must be at least 48m x 48m. If no sprayed conventional cotton is grown on that farm unit: the trap crop must be at least 24m x 24m.
Planting time	The trap crop should preferably be planted between November 1 and November 30. Note: if growers choose to plant their trap crop to coincide with the planting of pigeon pea refuges they must manage the trap crop in such a way that it remains attractive to Helicoverpa spp. 2-4 weeks after final defoliation.
Planting rate **	35kg/ha (recommended establishment greater than 4 plants per metre) Insect control The trap crop can be sprayed with virus after flowering; while avoiding insecticide spray drift.
Irrigation	The trap crop must be planted into an area where it can receive the additional irrigation required to keep the trap crop attractive to Helicoverpa spp. until after the cotton is defoliated.
Weed control	The trap crop should be kept free of weeds and particularly volunteer Bollgard II cotton.
Crop destruction	The trap crop must be destroyed 2-4 weeks (but not before 2 weeks) after final defoliation of the Bollgard II cotton crop, (slash and pupae bust – full soil disturbance to a depth of 10cm across the entire trap crop area).
	o that it is attractive (flowering) to Helicoverpa spp. after the cotton crop has cut out, and as any survivors from n pea too early (e.g. before November) or too late (e.g. mid December) is not adequate for cotton crops planted

during September through to October.

NB: If any grower encounters problems in complying with the resistance management plan, please contact your Monsanto Regional Business Manager.

For further background information on the various components of this plan see the "Preamble to the Resistance Management Plan for Bollgard II" in the current Cotton Pest Management Guide.

^{**} The planting rate is a recommendation based on a minimum of 85% seed germination.

INSECTS

SCHEDULE A – RESISTANCE MANAGEMENT PLAN FOR BOLLGARD II COTTON 2011/12

Ord River Irrigation and Burdekin Bowen Basin areas

Developed by Monsanto Australia Limited and the Transgenic and Insect Management Strategy (TIMS) Committee of Cotton Australia Limited.

The resistance management plan is based on three basic principles: (1) minimising the exposure of *Helicoverpa spp*. to the Bacillus thuringiensis (Bt) proteins Cry1Ac and Cry2Ab; (2) providing a population of susceptible individuals that can mate with any resistant individuals, hence diluting any potential resistance; and (3) removing resistant individuals at the end of the cotton season. The three principles are supported through the implementation of 5 elements that are the key components of the Resistance Management Plan. These elements are:

- 1. Refuge crops;
- 2. Planting window;
- 3. Pupae busting/Trap crops;
- 4. Control of volunteers and ration cotton; and,
- 5. Spray limitations.

Growers of Bollgard II cotton are required to practice preventative resistance management as set out below.

Compliance with the Resistance Management Plan is required under the terms of the Bollgard II Technology User Agreement and under the conditions of registration (Agricultural and Veterinary Chemicals Act, 1994).

This RMP is for the following areas:

- Ord River Irrigation Area, Western Australia
- Burdekin Bowen Basin Area, Queensland

1. Refuges

Growers planting Bollgard II cotton will also be required to grow a refuge crop that is capable of producing large numbers of *Helicoverpa* spp. moths which have not been exposed to selection with Bt proteins Cry1Ac and Cry2Ab. These unselected moths are expected to dominate matings with any survivors from Bollgard II crops and thus help to maintain resistance to Bt proteins Cry1Ac and Cry2Ab at low levels.

All refuge options are based on the requirement of a 10% unsprayed cotton refuge or its equivalent as determined by the relative production of *Helicoverpa spp.* from each of the refuge types as described in Tables 1 and 2.

For each area of irrigated Bollgard II cotton planted, a grower is required to plant a minimum of one, or a combination of, the following:

TABLE 1: Irrigated Bollgard II cotton refuge options							
Crop	Conditions	% of Bollgard II	Regions permitted				
Conventional Cotton	Irrigated, unsprayed conventional cotton	10	Ord River, Burdekin Bowen				
Pigeon pea	Fully irrigated, unsprayed	5	Ord River				
Chickpea	Fully irrigated, unsprayed	5	Ord River				

Note: Unsprayed means not sprayed with insecticides that target any life stage of *Helicoverpa spp*.

Bt products must not be applied to any refuge.

If the viability of an unsprayed conventional refuge is at risk due to early season pressure by *Helicoverpa spp.*, and with prior approval from the Monsanto Compliance and Stewardship Manager, a non-Bt heliocide can be applied up to the 4th true leaf stage. An unsprayed refuge should not be planted in the same field as any crop sprayed with a rate of insecticide that is registered for Helicoverpa spp, with the exception of Bollgard II. Sprayed crops and unsprayed refuges that are planted in adjacent fields must be separated by sufficient distance to minimise the likelihood of insecticide drift onto the unsprayed refuge. For the purposes of this Resistance Management Plan, conventional cotton includes any cotton varieties that do not have Bt proteins in the plant that control *Helicoverpa spp.* moths.

General conditions for all refuges:

(a) Refuge crops are to be planted and managed so that they are attractive to *Helicoverpa spp.* during the growing period of the Bollgard II cotton varieties.

Irrigated: It is preferable that all refuge is planted within the 2 week period prior to planting Bollgard II. If this is not possible, refuge planting must be completed within 3 weeks of the first day of sowing of Bollgard II. At this time, sufficient refuge must have been planted to cover all of the Bollgard II cotton proposed to be planted for the season (including Bollgard II already planted and any that remains unplanted). Should additional Bollgard II planting be made after this date, which is not already covered by refuge, additional refuge must be planted as soon as possible and no more than 2 weeks after sowing of the additional Bollgard II.

Dryland: The refuge must be planted within the 2 week period prior to planting Bollgard II.

(b) Pigeon pea refuges should not be planted until the soil temperature reaches 17°C, which is a requirement for germination, and should also be planted into moisture to ensure successful germination. If soil temperatures are not suitable to allow germination of pigeon peas in line with condition (a), an alternative refuge must be planted in its place within the prescribed period (under (a) above).

RMP INSECT

SCHEDULE A – RESISTANCE MANAGEMENT PLAN FOR BOLLGARD II COTTON 2011/12

Ord River Irrigation and Burdekin Bowen Basin areas (continued)

- (c) Once the Bollgard II cotton begins to flower the corresponding refuge should not be cultivated.
- (d) Insecticide preparations containing Bt may be used on Bollgard II cotton throughout the season BUT NOT on any refuge crops.
- (e) All refuges are to be planted within the farm unit growing Bollgard II cotton. Subject to clause (g) below, all reasonable effort should be taken to plant the refuge either on one side of, or next to, a Bollgard II cotton field, and all Bollgard II fields must be no more than 2 km from the nearest Bollgard II refuge.
- (f) To minimise the possibility of refuge attractiveness being affected by herbicide drift, non-herbicide tolerant refuges should be separated from herbicide tolerant Bollgard II cotton crops by a sufficient distance to minimise such drift, but no more than 2km from the Bollgard II cotton.
- (g) To account for possible insecticide drift, Bollgard II refuge crops must be at least 24 metres wide and 24 metres long. Different unsprayed refuge options may be planted in the same field as a single unit.
- (h) Slashing of plants within the refuge should only be carried out after Bollgard II cotton lint removal has been completed. Soil disturbance of refuge crops can only occur 2 weeks after Bollgard II cotton plants have been harvested.
- (i) Refuges for Bollgard II crops must be planted in the same row configuration as the Bollgard II crop.

2. Control of volunteer and ratoon cotton

Volunteer and ratoon cotton may impose additional selection pressure on *Helicoverpa* spp. to develop resistance to the Bt proteins Cry1Ac and Cry2Ab produced by Bollgard II cotton.

Growers must make all reasonable efforts to remove volunteer and ratoon plants as soon as possible from all fields – including fallow areas, Bollgard II crops, conventional cotton crops and all refuges. The presence of Bollgard II volunteers/ratoon cotton in any refuge will diminish the value of the refuge and must be removed as soon as possible.

Note: The refuge should preferably be planted into fallow or rotation fields that have not been planted to cotton in the previous season.

3. Post-harvest crop destruction

As soon as practical after harvest, Bollgard II cotton crops must be destroyed by cultivation or herbicide so that they do not continue to act as hosts for *Helicoverpa* spp. Unsprayed refuges must be left uncultivated for two weeks after harvest to allow emergence of any pupating *Helicoverpa* spp.

4. Planting windows

All Bollgard II crops and cotton refuges are to be planted into moisture or watered-up in a five week window.

In each region, the start date of the planting window will be determined by TIMS in consultation with local growers and reflected in a regionally amended "Bollgard II Planting Window Variation Notice".

The planting window will occur within the following periods:

Ord River Irrigation Area: March 1 and May 1.

Burdekin Bowen Basin Area: December 1 and April 1.

5. Refuge

Unsprayed Pigeon Pea refuge should preferably be planted into a fallow or rotation field that has not been planted to cotton in the previous season.

6. End of season chick pea trap crop

An end of season chick pea trap crop must be planted. The planting configuration of the trap crop should be the same as that of the Bollgard II crop. Table 2 shows the requirements for the chick pea trap crop.

TABLE 2: End of seas	on chick pea trap crop requirements
Criterion	End of season chick pea trap crop
Minimum area & dimensions	A trap crop of 1% of planted Bollgard II crop area is required. This planting must be at least 24 m x 24m wide.
Planting time	In April for Burdekin Bowen Area. In July/August for Ord area. The trap crop is to be planted such that it is attractive to Helicoverpa spp. from 2 weeks before defoliation of the Bollgard II cotton. It must remain attractive to Helicoverpa spp. until at least 2 weeks after defoliation of the Bollgard II cotton.
Insect control	The trap crop should be monitored and sprayed with insecticide if the larval pressure threatens the viability of the crop.
Irrigation	The trap crop is to remain attractive to Helicoverpa spp. until after defoliation of cotton. In some cases this may require one additional irrigation after the cotton is defoliated. The trap crop must be planted into an area where it can receive the additional irrigation required to ensure the trap crop remains attractive to Helicoverpa spp.
Weed control	The trap crop should be kept free of weeds and particularly volunteer Bollgard II cotton.
Crop destruction	The trap crop must be destroyed 2-4 weeks after defoliation of the Bollgard II cotton crop, but not before 3 weeks (slash and pupae bust – full soil disturbance to a depth of 10 cm across the entire trap crop area).

NB: If any grower encounters problems in complying with the resistance management plan, please contact your Monsanto Regional Business Manager.

INSECTS

Unsprayed pigeon pea refuge agronomy

Establishing and growing an attractive, refuge is a critical, mandatory component in the Resistance Management Plan for Bollgard II. The aim of a refuge is to generate significant numbers of Helicoverpa spp. moths which have not been exposed to selection pressure from either of the Bt proteins. Attractive, fully irrigated, unsprayed pigeon pea will, on average, produce twice as many moths as the same area of unsprayed cotton. As well as producing high numbers of moth, it is also crucial that the timing of production of moths from refuges matches that of Bollgard ll cotton crops.

The following information is intended to assist growers establish and maintain effective pigeon pea refuges. It is not part of the Resistance Management Plan (RMP) and growers should also refer to the RMP for guidance on refuge requirements.

While pigeon pea is a hardy, deep-rooted crop typically grown in dryland situations, it is not currently offered as a dryland refuge option because establishment and timing and duration of flowering can be problematic. Research is exploring the use of pigeon pea within a dryland environment as a refuge option.

Planting

Field selection

Pigeon pea can be grown on a wide range of soils, however is very prone to waterlogging, so select fields with good surface and internal drainage. Avoid areas where water tends to back up after irrigation and/or heavy rainfall.

The presence of Bollgard II volunteers/ratoons cannot be tolerated in refuge crop areas. This will diminish the value of the refuge and may impose additional selection pressure to Helicoverpa species. All refuges should preferably be planted into a fallow or rotation fields that have not been planted to cotton in the previous season so as to avoid the likelihood of ratoon or volunteer cotton in refuges. Avoid fields where Bollgard II was the most recent crop and there is a high risk of ratoon cotton (ie there were difficulties with crop destruction). Refuges should be planted on one side of, or next to, a Bollgard ll field. Sprayed crops and unsprayed refuges that are planted in adjacent fields must be separated by sufficient distance to minimise the likelihood of insecticide drift onto the unsprayed refuge. To minimise the possibility of herbicide drift, pigeon pea refuges should be separated from herbicide tolerant Bollgard ll cotton crops by a sufficient distance to minimise drift but not more than 2km from the Bollgard ll cotton. Nitrogen fixation by legumes such as pigeon pea is optimal in

soils with very low residual soil N. Field selection should take this into consideration.

As with many other legumes, pigeon pea has been shown to have allelopathic properties which may inhibit the growth and performance of the following season's crop. This should be taken into account if large fields are planted.

Timing

Pigeon pea requires a minimum soil temperature of 17°C and rising (similar to mungbeans and soybeans). Depending on location, this will normally occur in October-November. Pigeon pea is a photoperiod sensitive plant, and there is a wide range of flowering times among varieties. Therefore, choice of variety

and sowing date will strongly affect when it flowers.

Variety

Quest is currently the only variety available for refuge purposes. There is on going research to identify improved varieties, particularly for Northern cotton growing areas.

Given the usual planting time for cotton refuges, Quest takes 65 to 80 days to flower. With the right conditions it will continue to flower for a long period. To ensure Quest is attractive to Helicoverpa spp. during the same period of time that cotton is attractive (flowering), refuges should be planted within the two week period prior to planting Bollgard II, or if not possible, completed within 3 weeks of the first day of sowing Bollgard II*. *See RMP for details.

Row spacing

As pigeon pea is only available for use as a fully irrigated refuge option in the RMP, the maximum row spacing is 1.0 metre. Where cotton is grown on a row spacing narrower than 1.0 metre, the row spacing for pigeon pea should match that of the cotton for which it is a refuge.

Seeding rates

To maintain attractiveness, it is important to comply to the required plant stand of not less than 4 plants per square metre. Higher plant populations tend to produce plants with thinner stalks, making crop residues easier to handle. Evenly spaced, lower plant populations can still be attractive and tend to produce larger plants that flower for longer and can cope better with water stress.

Seed germination percentages can vary greatly (<30% to >80%). Growers are advised to have a current germination test for either purchased or farm-saved seed. The proportion of hard seed can also influence the number of plants established, often above expectations.

Seed size is normally in the range of 6,000–10,000 seeds/kg. Generally a sowing rate of 25-40 kg/ha is used, but allowances must be made for planting conditions and seed quality.

Seed bed preparation and planting

Ensure seedbed preparation is reasonable to avoid replants. Reasonable preparation is described as that in which seed is sown to a depth of no more than 5cm. Levelling of any seed trenches created during planting is important, particularly when residual herbicides have been used and/or the field is to be watered up. The use of press wheels with light pressure has been shown to improve emergence.

Pre-irrigation

Pre-irrigation and planting into moisture is generally recommended over watering up. Some growers choosing to water up the refuge with the rest of the field, then replant into this moisture if a replant is required.

Inoculum and fertiliser

Pigeon pea requires inoculation with Group J inoculant. To ensure efficacy of inoculant, follow all label requirements and directions regarding storage, handling and application. Nodulation will be limited in high nitrogen soils. A well-grown crop of pigeon pea can add up to 38kg/ha of nitrogen. However grown in soils with moderate to high background nitrogen, pigeon pea can leave the soil depleted of nitrogen. Pigeon pea is much more sensitive to

RMP INSECTS

phosphorus deficiency than cotton. In soils with long cropping histories where soil P may be depleted, pigeon pea is likely to respond to addition of phosphorus and zinc. Like cotton, pigeon pea is highly VAM dependent and in long fallow situations, it may even be more responsive to P and Zn.

Weed management

Pigeon pea grows slowly, particularly when planted into low soil temperatures. Therefore will be a poor competitor with weeds. While there are a number of herbicides available for use under permit, as seen in the table below, inter-row cultivation can be a useful tactic. However cultivation can inadvertently kill (the Bt-susceptible) Helicoverpa pupae present in the soil at the time. For this reason it is a requirement that once Bollgard ll cotton begins to flower the corresponding refuge should not be cultivated. The presence of Bollgard ll volunteers/ratoon cotton in any refuge will diminish the value of the refuge and must be removed as soon as possible.

Irrigation

Pigeon pea is extremely sensitive to waterlogging, and flood irrigation is generally not ideal for this crop. However it is the most common form of irrigation and growers need to be manage this carefully, for example, it is advisable to delay irrigating if heavy rain is predicted. Practices such as watering every second row, can be useful in supplying water to the crop, while reducing the risk of waterlogging by leaving room in the soil profile to make use of rainfall.

While pigeon pea generally requires less irrigation water than

cotton, it is important to ensure crops do not become water stressed as this will impact on attractiveness. Flowering will be delayed under periods of extreme moisture stress and this situation appears to be one of the biggest problems facing an efficient refuge system. If there is moisture present, pigeon pea will respond very quickly with attractive regrowth after insect attack.

Destruction and harvest of pigeon pearefuge crops

Harvest or destruction of aerial parts of a pigeon pea refuge should only be carried out after Bollgard II lint removal has been completed. In NSW and Southern Qld, soil disturbance should only occur after Bollgard II cotton fields have been pupae busted, (to ensure maximum emergence of pupae from refuges), and preferably be left uncultivated until the following October to enable the emergence of overwintering pupae. In Central Queensland soil disturbance of refuge crops can only occur 2 weeks after final defoliation of the Bollgard II cotton. Growers in Central Queensland using pigeon pea for trap crop purposes should refer to the late summer pigeon pea trap crop requirements of the RMP for full details.

The pigeon pea refuge can be harvested with the aim of recouping refuge planting seed for the following season. No crop product or crop residue is to be fed to livestock. To ensure viability for planting, focus on preserving quality. Harvest at 13.0% grain moisture for optimum seed quality. Rotary harvesters with low drum speeds (350-400 rpm) give best results. Crop dessication may be required.

Active Ingredient	Mode of Action	Concentration and formulation	Application rate of product	Comment
Prometryn	С	500 g/L:	Apply up to 4.5 L per hectare.	Apply up to the maximum rate pre planting and incorporate, or as a post
Prometryn	С	900 g/kg:	Apply up to 2.5 kg per hectare.	emergent directed spray towards the base of established plants.
Trifluralin	D	480 g/L:	Apply up to 2.3 L per hectare	Apply up to the maximum rate pre planting and incorporate.
Butroxydim	Α	250 g/L:	Apply 180 grams per hectare.	Apply the specified rate as a post emergence spray over the top of the
Fluazifop-p	А	212 g/L:	Apply 1 L per hectare.	pigeon pea crops.
		128 g/L:	Apply 1.6 L per hectare.	
Sethoxydim	А	186 g/L:	Apply 1 L per hectare.	
Haloxyfop	А	130 g/L:	Apply 600 mls per hectare.	
Haloxyfop	А	520 g/L:	Apply 150 mls per hectare.	-
Clethodim	A	240 g/L:	250 to 375 mL/ha (2-3 leaf stage)	Always apply with D-C-trate at 2 L/100 L or Hasten or Kwickin at 1 L/100 L or Uptake at 500 mL/100L spray volume. The lower doses will provide effective control if applied under ideal conditions to weed that are smaller, actively growing and free from temperature or water stress.
Quiazalofop		99.5 g/L	0.25–1 L/ha (dependent on growth stage and species of weed)	Refer to permit for growth stages of species and critical comments.
Flumetsulam	В	800 g/kg	25-50 g/ha + wetter	Post plant, pre emergent. Minimum spray volume 150 L water
Diquat	L	200 g/L	2-3 L/ha	Harvest aid
Diquat/paraquat	L	135 g/L + 115 g/L	0.8-2.4 L/ha	Apply pre-sowing, in minimum 50–100 L water
Pendimethalin	D	330 g/L	2.5-3 L/ha	Incorporate into the soil within 24 hours of application. Use higher rate
		440 g/L	1.9-2.25 L/ha	on heavy textured soils or those high in organic matter. May be applied
		455 g/L	1.8-2.2 L/ha	by aerial or ground spraying. In Macquarie Valley area, only apply by air
		475 g/L	1.74-2.11 L/ha	when ground is too wet for ground application.
Metribuzin	С	480 g/L	780 g/ha	Furrow irrigated: apply after furrowing out, within 2 weeks before sowing
		750 g/L	470 g/ha	and incorporate. For post-emergence: apply to actively growing seedling
700 g/L		500 g/ha	stage weeds provided crop plants have at least 2 trifoliate leaves. Do not spray if rain is likely to fall within several hours. Overhead irrigated: apply pre emergence then irrigate.	

NOTE: Only apply to pigeon pea crops that are to be destroyed at the end of the season or to be harvested for seed for refuge replanting only. No crop product or crop residue is to be fed to livestock. Refer to all labels and permit conditions.

Integrated Weed Management (IWM) for Australian cotton

Graham Charles, DPI NSW **Tracey Leven,** CRDC

What is IWM?

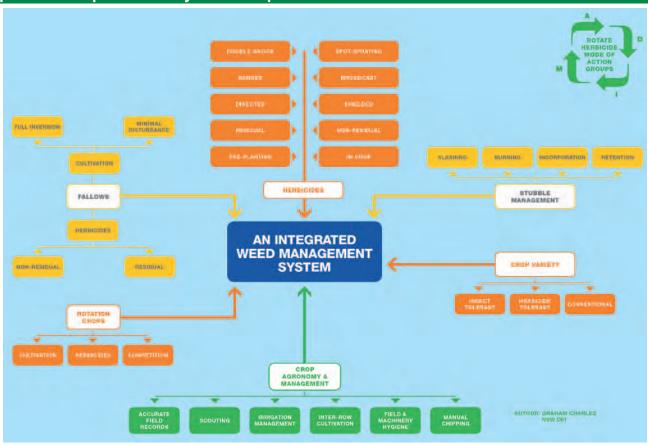
Integrated Weed Management (IWM) is the development and implementation of a plan made up of a range of weed management tactics. IWM aims to manage today's weed problems in a manner that reduces the potential for weed problems in the future. The main principle underlying IWM is preventing weeds from setting seed by:

- Knowing the weed spectrum and considering the interaction between weeds and the farming system (plan).
- Regularly examining the weed problem and the success or failure of recent practices (monitor).
- Assessing the weed management system and developing economic and sustainable solutions (evaluation).
- Implementing alternative management strategies to deal with any problems (response)

An IWM program uses a range of methods of weed control in combination (Figure 7), so that ALL weeds are controlled by at least one tactic in the weed management system. In short, IWM is about NOT relying on only one or two methods of weed control alone, and in particular it does not involve relying only on herbicides.

When developing an IWM program, think strategically about

how you can best utilise all available weed control methods in cotton, in rotation crops and in fallows to give the best overall result. A short term approach to weed management may reduce costs for the immediate crop or fallow, but may not be cost effective over a five or ten year cropping plan. Over this duration, problems with species shift and the development of herbicide resistant weed populations are likely to occur where weed control has not been part of an integrated plan. Herbicide resistant weed populations are increasingly common in NSW and Queensland.


Why use IWM in cotton systems?

Effectively managing weeds using an integrated program for the entirety of the cropping rotation will reduce:

- The rate of shift in the weed spectrum towards more herbicide tolerant weeds.
- The risk of selecting herbicide resistant weeds and so prolong the useful life of each herbicide.
- The risk of herbicides accumulating in the soil and riverine systems.
- Future weed control costs by reducing the number of weed seeds in the soil seed bank.
- The competitiveness of weeds and improve crop productivity each year.

Although all of these outcomes are important, reducing the risk

FIGURE 7: An integrated weed management system relies on a large number of interrelated, complementary components. All inputs into the system are important.

IWM

of selecting herbicide resistant weeds is critical. This threat to cotton production has already had a major deleterious impact on many other cropping systems in Australia and elsewhere. Throughout the world 185 weed species have developed resistance to different herbicides. Thirty-six weeds have developed resistance to herbicides in Australia. In northern NSW populations of 3 common grass weeds – awnless barnyard grass, liverseed grass and annual ryegrass - have resistance to glyphosate. Weeds with resistance to multiple herbicides is also occurring more frequently. The following tactics should be used to develop an integrated weed management strategy for your farm to help prevent the development of herbicide resistance.

IWM tactics in cotton

Know your weeds

Correct weed identification

Ensure that weeds are correctly identified before deciding upon a response. Similar species may respond differently to control measures. For example the strong seed dormancy mechanisms of cowvine (Ipomoea lonchophylla) make it less responsive to a tactic like the spring tickle than bellvine (*Ipomoea plebeia*) which has very little seed dormancy. Herbicide susceptibility can also differ between similar species. Yellow vine (Tribulus micrococcus) can be controlled by Staple while caltrop (Tribulus terrestris) is naturally tolerant.

The Weed Identification and Information Guide on the Cotton CRC website is a powerful tool to assist weed identification. Unknown weeds can be identified by scrolling through the collections of pictures and the supporting text. The picture collections include seedling, flowering and mature growth stages as well as close up images of seeds for over 80 of the weeds that commonly occur in cotton. Additional weeds and more detailed biology and ecology information are added to the collections as material becomes available.

Scouting

Scouting fields before weed control is implemented enables the weed control option to be matched to the species present. Soon after a control is implemented scouting should be repeated to assess efficacy. Weed audits are a requirement of growing Liberty Link and Roundup Ready Flex cottons. See pages 102 and 105 for details. These auditing techniques can also be used to scout weeds in conventional cotton and rotation crops. Timely scouting allows questions that affect the next weed control decision to be answered:

- Were the weeds damaged but have recovered?
- Has control been better in some parts of the field than others?
- Has there been good control but a subsequent germination? For IWM strategies to be effective in preventing resistance, weeds that survive a herbicide must be controlled by another method before they are able to set seed. Weeds may need to be closely examined, as some are capable of setting seed while very

Identify and closely monitor areas where machinery such as pickers and headers breakdown. Weeds seeds are often inadvertently released when panels are removed from machines for repairs.

Weed scouting in non-crop areas of the farm is a valuable source of information for planning future weed management strategies. Non-cropping areas, such as roadways, channels, irrigation storages and degraded remnant vegetation can be a

PERFORMANCE OF DOUBLE-KNOCK STRATEGIES ON FLAXLEAF FLEAFBANE, 6-10 LEAF (7-8 cm WIDE)

Initial Treatment	Days	Follow-up Treatment	% Control*
Roundup CT 2 L/ha		nil	55
Roundup CT 2 L/ha	7	Spray.Seed 1.6 L/ha	96
Roundup CT 2 L/ha	14	Spray.Seed 1.6 L/ha	96
Roundup CT 2 L/ha	21	Spray.Seed 1.6 L/ha	88
Roundup CT 2 L/ha Surpass 1.5 L/ha	7	Spray.Seed 1.6 L/ha	100
Roundup CT 2 L/ha Surpass 1.5 L/ha	14	Spray.Seed 1.6 L/ha	100
Roundup CT 2 L/ha Surpass 1.5 L/ha	21	Spray.Seed 1.6 L/ha	96
Roundup CT 2 L/ha Surpass 1.5 L/ha	7	Spray.Seed 2.4 L/ha	100
Roundup CT 2 L/ha Surpass 1.5 L/ha	14	Spray.Seed 2.4 L/ha	100
Roundup CT 2 L/ha Surpass 1.5 L/ha	21	Spray.Seed 2.4 L/ha	100
Source: Jeff Werth, DEEDI	Old Thes	e results are from a single	trial

Source: Jeff Werth, DEEDI Qld. These results are from a single tria conducted on the Darling Downs in October 2006.

*Control measured 28 days after the initial treatment was applied.

source of reinfestation and can provide opportunities for newly introduced weeds to build up significant seed banks. These can be moved into fields via water, wind and animals. Weed managers should always be on the lookout for new weeds.

Field records

For all fields, maintain records of weed control methods and their effectiveness after every operation. Consider the records from past years in this year's decisions, particularly in relation to rotating herbicide modes of action. Avoid relying too heavily on herbicides with the same mode of action. Repetitive use of the same mode of action group over time is closely associated with the evolution of herbicide resistance within weed populations.

The spring tickle

The spring tickle uses shallow cultivation in combination with a non-selective, knockdown herbicide. The aim of the spring tickle is to promote early and uniform germination of weeds prior to sowing to ease weed pressure in-crop. Some weed species are more responsive to the spring tickle than others. Highly responsive weeds include bellvine and annual grasses - liverseed grass and the barnyard grasses. Weeds that are less responsive include; cowvine, thornapple, noogoora burr and bathurst burr.

The shallow cultivation (1-3 cm) can be performed using implements such as, lillistons or go-devils.

Best results are achieved when the cultivation follows a rainfall event of \geq 20 mm. Adequate soil moisture is needed to ensure that weed germination immediately follows the cultivation. Where moisture is marginal, staggered germination may result in greater weed competition during crop establishment.

A number of non-selective, knockdown herbicides can be used to control the germinating weeds while they are young and actively growing. Glyphosate (Group M), Spray. Seed and Gramoxone (Group L), Pledge and Hammer (Group G), as well as some combinations of these herbicides can be used. Where cotton with Roundup Ready technology is to be planted this is an excellent opportunity to rotate herbicide mode of

action by using the Group L or Group G products at this time. These alternate mode of action products can also be used to control herbicide tolerant cotton volunteers. Depending on the weed spectrum, more selective products from other modes of action may be used. Refer to Table 27 page 97. For additional information regarding the plant back restrictions of these products for cotton, refer to Tables 23 to 26 on pages 95 and 96.

The double-knock

The double-knock technique is a fallow weed control tactic that is being used widely in the southern states to manage hard to control weeds such as herbicide resistant annual ryegrass. When executed well (right rates, right timing, right application) the double-knock tactic will provide 100% control. In cotton systems there are several ways the technique can be applied to improve control of weeds such as flaxleaf fleabane and simultaneously reduce the risk of resistance developing in other key weed species such as liverseed grass and awnless barnyard grass. Originally the technique was developed to maximise weed control at planting by using Spray. Seed or Roundup CT followed by the sowing operation. This has application at cotton

planting time for effective management of volunteers. More recently the double-knock has come to be the use of two herbicides. When using two herbicides, the basis of the double-knock is to apply a systemic herbicide, allow sufficient time for it to be fully translocated through the weeds, then return and apply a contact herbicide, **from a different mode of action group**, that will rapidly desiccate all of the above ground material, leaving the systemic product to completely kill the root system.

Most commonly glyphosate is followed with a Group L product. The optimum time between the treatments is dependent on the weed targets. Small, rapidly growing grasses respond best when the second application occurs 3–5 days after the first. When slightly larger fleabane is the target, separate the applications by 7–10 days. Examples of double-knock treatments and their efficacy on flaxleaf fleabane compared to a standard fallow application of glyphosate are shown on previous page.

Encourage insect predation

Insects predation can contribute significantly to natural mortality in the weed seed bank. Seed theft by ants commonly causes failure of pasture establishment, so it is feasible that weed seed banks can be decreased by encouraging ants. A study in the WA wheatbelt showed ant predation reduced annual ryegrass seed by 81% and wild radish seed by 46% over a 3 month period. Reductions were greatest it situations close to refuge areas such as fencelines and remnant vegetation. For further information, refer to the Weed CRC publication, Integrated Weed Management in Australian Cropping Systems. In central Queensland ant abundance in remnant vegetation has been shown to be favoured by vegetation diversity and the presence of leaf litter and fallen logs. Remnant areas need not be large to support rich diversity and abundance of ants. Ants are affected by many of the insecticides registered for use in cotton. When possible, avoid using products with a high or very high impact on ants. Refer to Table 3 Impact of insecticides and miticides on predators, parasitoids and bees in cotton, pages 8-9, for insecticide ratings.

In Bollgard II cotton and unsprayed refuges feeding by the Datura leaf beetle, *Lema trivittata*, can prevent thornapples from setting seed.

GUIDE TO THE CRITICAL PERIOD FOR WEED CONTROL
TO PREVENT 2% YIELD LOSS

Weed Type	Weed Density /	Cotton Growth Stage (day degrees) To prevent yield loss, control weeds						
	10 m row	Fro	m	То				
Large broadleaf	1	1–2 leaf	(145)	3 leaf	(189)			
weeds such as;	2	1–2 leaf	(144)	5–6 leaf	(275)			
noogoora burr,	5	1–2 leaf	(143)	first square	(447)			
thornapple, volunteer	10	1–2 leaf	(141)	squaring	(600)			
sunflower,	20	1–2 leaf	(139)	squaring	(738)			
sesbania	40	1–2 leaf	(131)	early flowering	(862)			
	1	1–2 leaf	(145)	2–3 leaf	(172)			
Medium broadleaf	2	1–2 leaf	(144)	4–5 leaf	(245)			
weeds such as;	5	1–2 leaf	(143)	pre-squaring	(387)			
bladder ketmia, mintweed.	10	1–2 leaf	(141)	early squaring	(514)			
Boggabri weed	20	1–2 leaf	(139)	squaring	(627)			
	40	1–2 leaf	(131)	squaring	(880)			
	20	_	_	-	_			
Grass weeds	30	1 leaf	(122)	1–2 leaf	(139)			
such as; awnless barnyard grass, liverseed grass,	40	1 leaf	(122)	2–3 leaf	(174)			
	80	1 leaf	(122)	4–5 leaf	(248)			
Johnson's grass	160	1 leaf	(122)	7–8 leaf	(357)			
	320	1 leaf	(122)	early squaring	(531)			

Herbicide tolerant GM cotton varieties

Herbicide tolerant cottons allow the use of non-selective herbicides for summer weed control in-crop. Incorporating this tactic into the IWM strategy allows for more responsive, flexible weed management. Weeds need only be controlled if and when germinations occur meaning herbicide application can be timed to have maximum impact on weed populations. In relatively clean fields the reliance on residual herbicides for in-crop management is reduced. In fields known to have heavy weed burdens, using the non-selective together with residual herbicides can achieve very high levels of control. Avoid using the same herbicide to control successive generations of weeds.

Prevent weed establishment

Where cotton is grown in rotation with crops such as winter cereals or maize, retain stubble cover from these rotation crops for as long as possible. Stubble cover reduces weed establishment and encourages more rapid breakdown of weed seed on the soil surface.

Use field history records to match residual herbicides to the likely weed problems in the field. Applying residual herbicides in combination with other in-crop measures reduces the selection pressure for resistance on post emergent herbicides.

Protect yield potential

After planting, time weed control measures based on the critical periods for weed control to prevent yield loss. Young cotton is not a strong competitor with weeds. The critical times when weed competition can cause yield loss are provided in the table above for a range of weed densities and weed types. Irrespective of the type of weeds, early season control is critical to prevent yield loss. The higher the weed population, the longer into the season weed control is required. Preventing yield loss as well as preventing weed seed set ensures there is an economic return from weed control both today and in the future.

IWM WEEDS

Control survivors and late germinations

Use a range of selective controls – inter-row cultivation, lay-by herbicide, chipping and spot spraying – to prevent seed set in weeds that survived early season tactics or have germinated late. For a range of reasons, situations will occur when some weeds escape control by herbicides. Missed strips due to poor operation of equipment, insufficient coverage due to high weed numbers, applying the incorrect rate and interruptions by rainfall are just a few reasons why weeds escape control. If herbicide resistant individuals are present, they will be amongst the survivors. It is critical to the longer term success of the IWM strategy that survivors not be let to set seed.

Inter-row cultivation

Inter-row cultivation can be used mid-summer to prevent successive generation of weeds from being targeted by post-emergent herbicides. Cultivating when the soil is drying out is the most successful strategy for killing weeds and will reduce the soil damage caused by tractor compaction and soil smearing from tillage implements.

Manual chipping

Manual chipping is ideally suited to dealing with low densities of weeds, especially those that occur within the crop row. It is normally used to supplement inter-row cultivation or spraying.

Spot spraying

Spot sprayers may be used as a cheaper alternative to manual chipping for controlling low densities of weeds in crop. Ideally, weeds should be sprayed with a relatively high rate of a herbicide from a different herbicide group to the herbicides previously used to ensure that all weeds are controlled.

Crop rotations

Rotation crops enhance IWM by:

- Introducing herbicide options not available in cotton;
- Producing stubble loads that reduce subsequent weed germinations; and,
- Varying the time of year non-selective measures can be used and the time of year that crop competition suppresses weed growth.

Rotation between summer and winter cropping provides opportunities to use cultivation and knockdown herbicides in-fallow at all times of the year. When summer crops such as maize are planted earlier than cotton, there is an opportunity to use crop competition and inter-row cultivation for cotton volunteer control rather than relying on herbicides, as is required when cotton follows cotton.

Bury seed of surface-germinating species

Use strategic cultivation to bury weed seeds and prevent their germination. Some weed species, such as common sowthistle (milk thistle) and flaxleaf fleabane, are only able to germinate from on or near the soil surface (top 20 mm). Time operations such as pupae busting, where full disturbance of the soil is required, to assist in situations where these species have set seed. Burying the seed more than 20 mm below the surface will prevent its germination. This tactic is most successful when used infrequently as seed longevity of common sowthistle and flaxleaf fleabane will be extended from ~12 months to ~30 months.

Practice good farm hygiene

To minimise the entry of new weeds into fields, clean down boots, vehicles, and equipment between fields and between properties. Pickers and headers require special attention. Eradicate any new weeds that appear while they are still in small patches. Monitor patches frequently for new emergences. Irrigation water can be a source of weed infestation with weed seeds being carried in the water. While it is not practical to filter seeds from the water, growers should be on the look out for weeds that gain entry to fields via irrigation. Give special consideration to water pumped during floods, as this has the greatest potential to carry new seeds. If possible flood water should be first pumped into a storage to allow weed seeds to settle out before being applied to fields. Control weeds that establish on irrigation storages, supply channels and head ditches.

Critical success factors in IWM

Timely implementation of tactics

Often the timeliness of a weed control operation has the largest single impact on its effectiveness. Herbicides are far more effective on rapidly growing small weeds, and may be quite ineffective in controlling large or stressed weeds. Cultivation may be a more cost-effective option to control large or stressed weeds, but additional costs can be avoided through being prepared and implementing controls at the optimum time.

Rotate herbicide groups

All herbicides are classified into groups based on their mode of action in killing weeds. Rotate herbicide groups whenever possible to avoid using the same group on consecutive generations of weeds. When this is unavoidable, use other methods of weed control in combination with the herbicide and ensure no weeds survive to set seed. The cotton industry is very fortunate to have registered herbicides in the majority of the mode of action groups.

Closely follow herbicide label recommendations

Herbicides are a principal component of most IWM strategies so it is important that they are used in the most effective manner possible. When reading the herbicide label check:

- That the rate you are about to use is right for the growth stage of the target weeds.
- Whether a wetter or crop oil is required to maximise herbicide performance.
- That the application set up you are about to use is consistent with the label water volume, droplet spectrums, operating pressure.
- For additional, specific information regarding appropriate weather conditions for spraying.

Herbicide efficacy is highly dependant of the use of correct application techniques. Always consider the suitability of weather conditions. Using higher water volumes and coarse to very coarse droplet spectrums reduce the likelihood of product being lost off target.

Consider other aspects of crop agronomy

Most agronomic decisions for cotton have some impact on weed management. Decisions such as cotton planting time, pre-irrigation versus watering-up, methods of fertiliser application, stubble retention and in-crop irrigation management all have an impact on weed emergence and growth. The influence of these decisions should be considered as part of the IWM program. For example, modify the timing and method of applying pre-plant N to achieve a 'spring tickle' in the same operation.

IWM approach to problem weeds

Duncan Weir, DEEDI Old

Barnyard grass

Barnyard Grass – Echinochloa crus-galli Awnless Barnyard Grass – Echinochloa colona

Identification

There are two species of this grass, barnyard grass (*Echinochloa crus-galli*) and awnless barnyard grass (*Echinochloa colona*). Barnyard grass has a purplish base, slender hairless stems, is tufted, and is usually erect growing to 0.9 m tall. Seeds have awns up to 50mm in length and are generally pale brown in colour. Awnless barnyard grass is semi-erect growing to 0.6 m tall, has a purplish base, is tufted and has slender hairless stems. The seed generally does not have awns, is white in colour and it can have purplish-red bands on its leaves. Both types do not have ligules.

Weediness

Barnyard grass germinates any time throughout spring and summer following heavy rain or flooding. They grow very rapidly following establishment, compete strongly with crops and seeding is prolific. They are spread by water through irrigation, flooding or the river. They will grow in a wide range of soil types particularly heavy soils which are periodically flooded.

There is a high risk of barnyard grass developing glyphosate resistance particularly when growers are using minimum or zero till systems. In some areas it has developed resistance to group C herbicides.

Control hints

- Target small weeds 2-3 leaves;
- Use a double knock technique especially for dense populations;
- Pre-emergent herbicides will reduce the numbers of plants emerging, allowing more effective control of escapes by postemergent herbicides;
- Include crop rotations and different herbicide groups in its control; and,
- Include cultivation as a weed management tool.

Liverseed grass

Urochloa panicoide

Other common names: Urochloa

Identification

Liverseed grass has broad, pale yellow –green leaves with hairs on the leaf margins and sheath. Its stems tend to lie flat with the growing ends bending up into an erect position to a height of 80 cm. Can for tufts or dense leaf matt areas. It takes root where the stem nodes touch the ground. The seed head has two to seven spikes and is about 10 cm long.

Weediness

Liverseed grass generally emerges in one large flush in late spring following a good rainfall event. Once established it grows rapidly forming a dense mat competing strongly with crops. It readily sets seed in summer.

Liverseed grass has developed resistance to the Group C herbicide atrazine in southern Queensland.

Control hints

- Target small weeds 2-3 leaves;
- Use a double knock technique especially for dense populations;
- Consider spring tickle followed by knockdown non-selective herbicides;
- Adjuvants can improve level of control;
- Include crop rotations and different herbicide groups in its control; and,
- Include cultivation as a weed management tool, although monitor for subsequent emergence as liverseed grass prefers germination from depth.

Problem weeds WEEDS

Cowvine

Ipomoea lonchophylla

Other common names: Peach vine, Bindweed

Seedling leaves are v shaped up to 35 mm long, young stems may be purplish in colour. Mature leaves tend to be triangle to egg shaped, have notched bases, wavy margins which tend to fold in and are up to 100mm long. Cowvine is a prostrate non twining vine with white, trumpet shaped flowers.

Weediness

Cowvine is a summer growing annual or biannual plant which can germinate all year round. Flowering starts very early and will continue all year. Prefers heavy clay soils and can for dense stands following floods or heavy rain. It is suited to irrigation cropping and angles in cultivation and harvesting equipment.

Control hints

- Target small weeds 2-3 leaves; and,
- Due to propensity to cause issues at harvest, consider manual chipping if problem develops.

Polymeria

Polymeria longifolia

Other common names: Peak Downs curse, Clumped bindweed

Identification

Seedlings have squarish leaves that are slightly notched at the tip and stem base. Main vein are predominant.. Leaves are long and narrow, grey-green to silver in colour with very short stalks. Plants are erect, up to 50cm high and have silky hairs. Flowers are bell shaped to 20mm and are generally pale pink. Polymeria also readily reproduces from vegetative fragments and can produce a deep extensive rhizome system.

Weediness

Polymeria is a perennial weed which can readily reproduce from small vegetative fragments as well as from seeds. It rapidly grows through spring and summer although can survive over winter under favourable conditions. Flowering can occur all year round and can produce large numbers of seeds. It is

extremely drought resistant and forms dense patches. Very difficult to control by cultivation as it tends to spread the problem rather than control it.

Control hints

- Wide spread, on farm anecdotal observations suggest polymeria is best managed using repeated applications of glyphosate. The addition of a non-ionic surfactant or Pulse Penetrate may improve efficiency; and,
- Cultivation is likely to spread seed.

Common sowthistle

Sonchus oleraceus

Other common names: Milk thistle, Sowthistle, Milkweed

Identification

Seedling leaves are small and oval to 6mm round. First true leaves are round and have spines on the margins. Adult leaves are dark green, up to 35cm long, are well lobed and have small soft spines. Lower leaves for a rosette with the stem while upper leaves clasp the stem. Sowthistle produces a milky sap, has a deep tap root and can grow to 1.8m tall. Flowers are bright yellow and have a swollen base. Seeds have white silky hairs.

Weediness

Sowthistle is an annual plant normally growing through winter and spring. With the move to minimal or zero tillage systems, it has become a problem all year round particularly in fallow fields. Several populations have been identified showing resistance to Group B herbicides (chlorsulfuron). It is a very profuse seed producer and is spread widely by wind.

Control hints

- Increased competition results in lower weed pressure;
- Target small weeds;
- Include cultivation as no seedlings emerge from below a depth of 20 mm;
- Rotate different herbicide groups to reduce the risk of resistance developing;
- Use a variety of cultural weed control tools ie different crops, tillage, chipping;
- Control survivors to prevent seed set; and,
- Good whole of farm hygiene will reduce seed spread to fields.

WEEDS Problem weeds

Nutgrass

Cyperus rotundus

Identification

Nutgrass normally reproduces from a tuber, new shoots are dark green in colour, narrow, erect and taper to a sharp point. Form grass like mats normally up to 30 cm high but can be higher. Produces extensive underground rhizomes and tubers. Seed heads are brown and are attached to a triangular stem with several leaves near the top. Tubers are brown, oval to round and vary in size up to 20mm long. Nut grass is susceptible to frost and will burn off in winter only to re-emerge in spring.

Weediness

Nutgrass spreads extremely quickly with each tuber producing as many as 2000 new tuber in a single season. Tubers are readily spread by cultivation and it competes strongly with crops.

Control hints

- A long term IWM plan that considers whole of farm, must be applied to manage this weed;
- Nutgrass can be controlled using a combination of cultivation, residual herbicides, contact herbicides and crop competition; and,
- Farm hygiene plays a critical role in preventing the weed being move around the farm, in particular on machinery.

Feathertop Rhodes grass

Chloris virgata

Identification

Seedlings are erect with the stem having a flattened appearance. Leaf blade margins have tufts of long hairs and where the blade joins the leaf sheath. Mature plants are tufted with erect and semi erect branches. Stems are capable of producing roots when the stem joints touch the ground. Leaf blades are bluish-green up 25 cm long and the joints are hairless. Seed heads are erect and silvery white and are feathery in appearance. It can often be confused with barnyard grass during the pre-tillering stage.

Weediness

There are only a few herbicides registered for control of feathertop rhodes grass. It is not particularly susceptible to glyphosate particularly after it is established. Generally grows between spring and autumn but germinate all year around given favourable conditions. It tends to be a problem in zero till systems.

Control hints

- Control of feathertop rhodes grass requires an integrated approach as no single management application is completely effective;
- Targeting small actively growing plants gives the best chemical response however it is highly recommended that a double knock strategy is implemented to maximise effectiveness;
- Cultivation can be effective but care must be taken to prevent the plant from being transplanted; and,
- Seeds need to be buried more than 10 cm to be effective.

Flaxleaf Fleabane

Conyza bonariensis

Identification

Seedling leaves are elongated oval (3 mm x 1 mm), bluish-green in colour and hairless. First true leaves are circular and covered in hairs. Leaves are elongated (up to 10cm), softly haired, wavy notched margins and form a rosette. Mature plants are erect, multi-branched and up to 1 m tall. Flowering heads are pale green, 10 mm wide and form fluffy white balls when open. Seed is very small and have white hairs for wind dispersion

Weediness

Flaxleaf Fleabane is relatively tolerant to glyphosate particularly when it is well established. Mature plants are very difficult to control. It produces huge numbers of seed (up to 110 000) per plant if left to mature. It will germinate through autumn, winter and spring, and will flower from spring to autumn. Flaxleaf Fleabane will germinate in the presence of light and emerge from the top 10mm of soil. It is becoming a very serious weed of minimal till, zero till systems.

Control hints

- Include cultivation as a tactic seeds only emerge from (or near) the soil surface;
- Avoid wide row cropping in weedy paddocks;
- Use pre-emergent herbicides applied pre, at, or post-planting. Use high recommended rates for better control;
- When using selective post-emergent herbicide target small weeds timing is critical closely monitor fields and treat seedlings early.
- Use a variety of chemistry and rotate herbicide groups and modes of action; and,
- Control survivors and prevent them from setting seed.

Flaxleaf fleabane. (Susan Maas, DEEDI Qld)

		Pagistared for use in:	Plant back to cotton	Notes			
Trade name	Herbicide active ingredient	Registered for use in;	Plant back to cotton	Notes			
Hotshot aminopyralid + fluroxypyr		Cereal Crops: wheat, barley, oats, triticale fallows	9 months	When rates up to 750 ml/ha are used. If is less than 100 mm in over a 4 month period the plant back period may be significantly longer.			
atrazine	atrazine	Cereal Crops: broom millet, maize,	6 months	Following treatments of up to 1.4kg/ha			
		sorghum Legume Crops: lupins Other Field Crops: forage sorghum, potatoes, TT canola, sugarcane Pastures: lucerne, grass pastures	18 months	Following treatments of 1.4kg/ha to 3.3kg/ha			
Primextra Gold	atrazine +	Cereal Crops: sorghum, maize.	6 months	When rates up to 3.2 L/ha are used.			
	s-metolachlor	Other Field Crops: sugarcane	18 months	When rates above 3.2 L/ha are used.			
Glean	chlorsulfuron	Cereal Crops: wheat, barley, triticale, oats, cereal rye	18 months	Where soil pH is 6.6–7.5 and 700 mm of rain has fallen. For soil pH >7.5 only grow cotton after growing a test strip.			
Lontrel 750SG	clopyralid	Cereal Crops: wheat, barley, oats,	3 months	When rates up to 30g/ha are used.			
		triticale	6 months	When rates of >30g-120g/ha are used.			
		Other Field Crops: canola Pastures and Fallows	24 months	When rates above 120g/ha are used. At least 100 mm rainfall during plant back period,			
diuron	diuron	Cereal Crops: wheat, barley, oats, triticale, cereal rye Legumes: lupins Pastures: perennial grass seed crops, lucerne	Spring the following year	Cotton, corn and sorghum may be planted in spring of the following year			
Broadstrike	flumetsulam	Cereal Crops: winter cereals, maize	6 months	When rates up to 25g/ha are used			
		Legume Crops: chickpeas, field peas, lentils, soybeans Other Field Crops: peanuts, fenugreek, lathyrus Pastures: lucerne, serredella, clover, medic, Popany vetch	9 months	When rates of up to 50g/ha are used On deep, black earth with no impermeable sub horizon on the top 30cm			
Balance	isoxaflutole	Legume Crops: chickpeas Other Field Crops: sugarcane	7 months	350 mm rainfall between application and planting the subsequent crop. Do not include flood or furrow irrigation.			
Spinnaker	imazethapyr	Legume Crops: chickpeas, faba	22 months.	Dryland cotton.,			
		beans, field peas, mungbeans, soybeans Other Field Crops: peanuts Pastures: lucerne, serradella, sub clovers	18 months.	Irrigated only. (Providing rainfall and irrigation exceeds 2000mm)			
Tordon 75D	picloram + 2,4-D	Cereal Crops: wheat, barley, oats, triticale, sorghum, maize Other Field Crops: sugarcane Pastures: Pastures	12 months	Do not rotate susceptible plants until an adequately sensitive bioassay or chemical test shows that no detectable picloram is present within the soil.			
Tordon 242	picloram + MCPA	_	12 months	Do not use on land to be cultivated for growing susceptible crops within 12 months of applying			
simazine	simazine	Legume Crops: chickpeas, faba beans, lupins Fruit & vegetable crops, Forestry & Ornamental Other Field Crops: TT canola Pastures: lucerne, sub clover, perennial grasses	9 months	When up to 2.5kg/ha are used. When rates exceed 2.5kg/ha plantings may not be possible for very long periods afterwards.			
Logran	triasulfuron	Cereal Crops: wheat, barley, oats	15 months Soil pH Less than 6.5	700 mm rainfall between application and			
			15 months Soil pH 6.6–7.5	sowing the plant back crop.			
			18 months Soil pH 7.6–8.5				
Grazon* Extra	triclopyr + picloram + aminopyralid	Fallow	18 months	During drought conditions (<100 mm rainfall in a 4 month period) the plant back is significantly longer.			

TABLE 24: Plant backs to cotton for herbicides used in seedbed preparation													
Herbicide active ingredient	2,4-[O amine 62	25 g/L	2,4-	D amine 30	00 g/L		mba 700 oxypyr 20	<i>3</i>	fluro	xypyr 200) g/L	triclopyr 600 g/L
Rate L or g/ha	0.56	0.56– 1.1	1.1–1.7	1.1	1.1–2.3	2.3-3.4	140	200	400	0.375	0.75	1.5	
Plant back ¹ (days)	10	14	21	10	14	21	7	7	14	14	14	28	14
¹ If applied to dry soil, at	least 15 mr	n rain is requi	red before plar	nt back pe	riod begins.								

Trade name	Active ingredient	Registered for use in;
Raptor	imazamox	Legume Field Crops: field peas, soybeans Other Field Crops: peanuts Pastures: lucerne, legume-based pastures
Midas	imazapic + imazapyr + MCPA	Cereal Crops: Clearfield wheat 34 months, May be affected by Climatic conditions
Hussar	mefenpyr-diethyl + iodosulfuron- methyl sodium	Cereal Crops: wheat 12 months. Rainfall of less than 500mm following Hussar use may result in extended re-cropping intervals for summer crops sown in the following season.
metribuzin	metribuzin	Cereal Crops: wheat, barley, oats Legume Crops: chickpeas, faba beans, lentils, vetch, lupins, field peas soybeans (irrigated) Other Field Crops: potatoes
Ally	metsulfuron methyl	Cereal Crops: wheat, barley, triticale Legume Crops: chickpeas (desiccant) Other Field Crops: Clearfield canola
Harmony M	metsulfuron methyl + thifensulfuron	Cereal Crops: wheat, barley, triticale
Atlantis	metsulfuron methyl + mefenpyr- diethyl	Cereal Crops: wheat 12 months. Rainfall of less than 500mm following Atlantis use may result in extended re-cropping intervals for summer crops sown in the following year.
Monza	sulfosulfuron	Cereal Crops: wheat, triticale
Express	tribenuron methyl	Fallows

Where fields have been treated with herbicides with no plant back recommendations to cotton, firstly determine the tolerance of cotton grown through to maturity on a smaller scale before sowing larger

TABLE 26: Cotton h	TABLE 26: Cotton herbicide plant backs to rotation crops																								
Herbicide				Pla	nt ba	cks fro	om co	tton t	o rota	ation o	rops	(mont	:hs)												
active ingredient			Cereal	l grair	crop	S						Legi	ume c	rops						Other	crops	;			
	Barley	Maize	Millet	Oats	Sorghum	Triticale	Wheat	Adzuki bean	Chickpea	Cow pea	Fab bean	Field pea	Lab Lab	Lupin	Lucerne	Mungbean	Pigeon pea	Soybean	Canola	Safflower	Linseed	Sunflower			
chlorthal dimethyl	8	8	8	8	8	8	8	8	8	8	8	8	8	8	FH	FH	8	FH	8	8	8	8			
diuron	24	24	24	24	24	24	24	24	24	24	24	24	24	24	12	24	24	24	24	24	24	24			
fluometuron	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6			
fluometuron + prometryn	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6			
halosulfuron-methyl	24	2	24	24	2	24	3	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24			
metolachlor	6	0	6	6	01	6	6	6	6	6	6	6	6	6	6	6	6	0	6	6	6	0			
norflurazon ²	30	27	NI	30	27	30	30	NI	9	NI	30	NI	NI	NI	NI	27	NI	9	NI	18	18	27			
pendimethalin	6	03	12	12	12	NI	NI	NI	NI	NI	NI	NI	NI	NI	6	NI	NI	NI	6	NI	NI	NI			
prometryn	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6			
pyrithiobac sodium	5	22	NR	5	22	NR	5	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	22	NR	NR	NR	22			
s-metolachlor	6	0	6	6	01	6	6	6	6	6	6	6	6	6	6	6	6	0	6	6	6	0			
trifloxysulfuron sodium	6	22	22	6	22	22	6	22	18	22	7	22	22	22	22	9	15	15	22	22	22	22			
trifluralin	12	12	12	12	12	12	12	FH	FH	FH	FH	FH	FH	FH	FH	FH	FH	FH	FH	FH	FH	FH			

¹ Concep II treated seed only.
2 For rates up to 3.5 kg/ha. Where higher rates, up to 4.2 kg/ha are used, increase plant back period by 6 months.
3 Maize can be resown immediately after use in a failed crop provided the seed is sown below the treated band of soil.
Further information in Weed control in Summer and Winter Crop Publications from DPI NSW

FH = following cotton harvest
NR = not recommended

NI = no information S= in the spring following application

The potential for herbicide resistance in cotton farming systems

Jeff Werth and David Thornby, Department of Employment, Economic Development and Innovation (DEEDI Qld)

Tracey Leven, CRDC

Glyphosate tolerant technology (Roundup Ready and Roundup Ready Flex) has been in use in cotton systems for approximately 10 years and is now widely adopted. To date, there is only one documented case of a glyphosate resistant species in an Australian cotton farming system. This case of barnyard grass was found in a dryland cotton rotation system.

Although there is still a diversity of herbicides used in conjunction with cultivation and other cultural practices, there is an increasingly reliance on glyphosate for the majority of weed control in cotton production systems. This reliance not only occurs in Roundup Ready/Flex cotton but also in conventional cotton and other crops for fallow weed control. This reliance on glyphosate increases the risk of glyphosate resistance development.

The cotton growing regions are closely aligned with the northern grains region. Across this area, there are 16 weed species that have developed resistance to at least one herbicide mode of action. Most recently, liverseed grass with resistance to glyphosate has been confirmed. Table 25 summarises the herbicide resistance status of weeds in the north to each of the herbicide modes of action that are available for use in cotton. This list clearly illustrates that if strategies used for weed management in cotton become overly reliant on individual herbicides, resistance can occur.

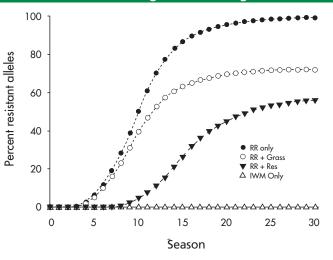
Development of herbicide resistant weed populations has been most strongly associated with minimal or zero tillage cropping systems, and where there is only limited rotation between summer and winter crops. A recent risk assessment of species using characteristics that promote the development of resistance, identified a number of weeds considered to be at high risk of developing resistance (see page 98). These species generally produce a large amount of seed and are often present in high numbers in the field when they are sprayed. If one or only a few herbicide groups are continuously applied to a weed population, a high selection pressure is placed on that population thus increasing the risk of resistance development. The population dynamics of two weed species, barnyard grass (Echinochloa crus-galli) and liverseed grass (Urochloa panicoides) were modelled under a range of weed management strategies in an irrigated cotton system. The model used the results from experiments investigating the seed producing capabilities of the two species and their responses to glyphosate. Outputs from the model showed that the largest factor affecting resistance development was management, shown in Figure 8, when a glyphosate-only approach to weed control was taken,

			an weeds with re			the
			loA) groups used	in cot	ton	
of	ode	Examples of cotton	Australian weeds with resistance to			Other
	tion	herbicides	the MoA (not to	NSW	Qld	States
	oup	with the MoA	specific herbicides)			
		fluazifop-p,	Annual ryegrass	1		1
	fop	haloxyfop-r, propaguizafop	Barley grass Paradoxa grass	√		√ ✓
		propaguizarop	Wild oat	/	/	1
Α		butroxydim,	Annual ryegrass	1	/	
	dim	clethodim,	Barley grass	,		✓
	70	sethoxydim	Paradoxa grass Wild oat	1	/	,
		halosulfuron-	Annual ryegrass	<u> </u>		
		methyl,	Barley grass	·		1
		trifloxy-sulfuron	Wild oat			✓
		sodium	Northern barley grass African turnip weed	✓	,	
	g		Black bindweed		/	
	ulfonylurea		Charlock	1	·	
	on y		Common sowthistle	√	✓	
	Ę		Dirty Dora Indian hedge mustard	1	,	1
В	3,		Paterson's curse	V	V	✓
			Prickly lettuce			
			Turnip weed	✓.	✓	
			Wild radish Wild turnip	1		1
	_	imazapyr	Annual ryegrass			√
		тигадаруг	Indian hedge mustard	·		1
			Prickly lettuce			√
		purithi abas sadiu	Wild radish			
		pyrithiobac sodiu diuron,	Annual ryegrass			
C	urea	fluometuron	Liverseed grass		/	·
		prometryn	·			
	line	pendimethalin, trifluralin	Annual ryegrass	✓		✓
	ani	umuraiii				
	jŧĸ					
D	benzoic acid dinitroaniline					
	acid	clorthal dimethyl				
	Si Si	uimetriyi				
	enz					
F	<u> </u>	norflurazon				
1		carfentrazone				
G		ethyl,				
		oxyfluorfen	La dia a la			,
	OX	2,4-D	Indian hedge mustard Wild radish			/
	phenoxy		VVIIG TUGISIT			V
I		dicamba,				
		triclopyr,				
		fluroxypyr				
K		metolachlor,	Wild oat	✓		
		s-metolachlor paraquat,	Barley grass			J
L		diquat	Northern barley grass			/
			Silver grass			√
		glyphosate	Annual ryegrass	1	1	V
М			Barnyard grass Flaxleaf fleabane	1	1	
			Windmill grass	/	·	
		1.6	Liverseed grass	✓		
N		glufosinate-amm				/
Q		amitrole + ammonium	Annual ryegrass			V
~		thiocyanate				
Z		MSMA				

T	OP	10 SPE	CIES /	AT R	ISK	O	F D	EVI	EL(DPI	NG	HE	RBI	CII	DE	
				F	RES	IST	ΓAΝ	ICE								
																i

	RESISTANCE							
Rank	Common name	Species rating (out of 10)						
1.	Sweet summer grass	8.2						
2.	Flaxleaf fleabane	7.6						
3.	Liverseed grass	7.2						
4.	Feathertop rhodes grass	7.0						
5.	Sowthistle	6.9						
6.	Awnless barnyard grass	6.9						
7.	Crowsfoot grass	6.3						
8.	Paradoxa grass	6.3						
9.	Barley grass	6.3						
10.	Annual ryegrass	6.1						

resistance was likely to occur. Timeframes for resistance developing to the point of field control failures was in the vicinity of 12–17 years. When Roundup Ready technology was used together with another herbicide option, resistance development was delayed.


When it was used as part of a fully integrated weed management strategy, resistance was not predicted to develop over the 30 year period of the simulation. The weed management requirements of the Roundup Ready Flex Crop Management Plans (CMPs) are designed to ensure that the technology is used in an integrated strategy. It is essential that the industry follows the CMPs and is proactive in preventing the development of herbicide resistance.

Making the fallows count

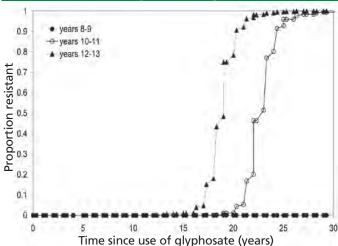
Generally, glyphosate is relied on more in the fallows than in Roundup Ready Flex cotton. No-till is now adopted widely in both cotton and grains systems, putting severe pressure on glyphosate to keep weeds, in particular grasses under control. Awnless barnyard grass (*Echinochloa colona*) a key weed of summer fallows and cotton crops, can have up to five or more emergences over the summer fallow period. If glyphosate alone was used to control each of these flushes, the timeframe for resistance development would be even lower than using glyphosate alone in Roundup Ready Flex.

The fallow creates an opportunity to use different herbicide

FIGURE 8: Simulated accumulation of glyphosate resistance alleles in a barnyard grass population under four weed management strategies.

YEARS OF HERBICIDE APPLICATION BEFORE RESISTANCE EVOLVES							
Herbicide group	Years of application	Herbicide resistance risk					
A (Fops, Dims, Dens).	6-8	High					
B (SUs: Glean, Ally. IMIs: Flame, Spinnaker)	4	High					
C (atrazine, prometryn, fluometuron).	10–15	Medium					
D (trifluralin, pendamethalin)	10–15	Medium					
F (norflurazon)	10	Medium					
I (phenoxies)	not known	Medium*					
L (paraquat/diquat)	15+	Medium*					
M (glyphosate)	15+	Medium*					
N (glufosinate)	not known	Medium*					
Adapted from Preston et al. 1999							

groups. An example of this is the use of paraquat and paraquat+diquat as part of the "double knock" tactic. The double knock has various forms, however the main one for grass control is glyphosate followed by paraquat or paraquat+diquat up to 7 days later. This tactic as been proven effective on glyphosate resistant barnyard grass and can ensure that survivors of glyphosate applications are controlled. The ability of the double knock to prevent resistance is shown in Figure 9.


When the double knock is used each year on the main flush, the likelihood of resistance developing is almost eliminated. This makes it a valuable tactic to reduce the selection pressure on grasses in the fallow.

Putting it all together

When preparing a weed management plan it is important to consider the following points:

• What are the key weed species in each field, and how dense are they? Different species may require specific management. If the field is dense with weeds it is important that weed control does not rely on one herbicide (i.e. Roundup in Roundup Ready Flex cotton). If a field has a low weed pressure, careful monitoring also needs to be practiced.

FIGURE 9: Predicted evolution of glyphosate resistance in barnyard grass under zero-till summer fallows with reliance on glyphosate plus three double knock regimes: two years of double knock on every weed flush in the years specified, followed by double knock annually on the largest flush.

Potential resistance WEEDS

• What is the history of herbicide use in the field? Although glyphosate-tolerant cotton may have only been used in a field for a couple of years, it is important to know what herbicides have been used in other crops and fallows prior. Glyphosate may have been heavily relied upon in fallows long before the introduction of glyphosate-tolerant cotton.

- What herbicides are effective on the key weeds in each field, and when is the best time to use them? In the case of awnless barnyard grass, it is controlled well by glyphosate, paraquat, group A herbicides such as Verdict and some residual herbicides. In a rotation containing glyphosate-tolerant cotton, glyphosate will be used in-crop. However to minimise the glyphosate selection pressure, residual or post-emergent herbicides can also be used. It should also be noted that glyphosate should not be solely relied upon in fallow: this is an opportune time to use paraquat (group L) or perhaps even a residual (keeping in mind they have a medium resistance risk). The table on page 98 shows that Verdict (group A) has a high risk of developing resistance, so its use should be limited to in-crop applications rather than in fallow.
- Last but not least, when can tillage be used? There are a number of opportunities, particularly in irrigated cotton, where tillage can be used. These include pupae busting, incorporation of fertilisers, seed bed preparation and maintaining irrigation furrows. It is possible that these operations can be timed to combine with weed control measures. No herbicide resistance can evolve to 'cold hard steel'.

Looking for early signs of resistance

Herbicide resistance is normally present in very low frequencies in weed populations before the herbicide is first applied. Using the herbicide creates the selection pressure that increases the resistant individuals' likelihood of survival compared to 'normal' or susceptible individuals. The underlying frequency of resistant individuals within a population will vary greatly

WEEDS Potential resistance

with weed species and herbicide mode of action. Resistance can begin with the survival of one plant and the seed that it produces. Early in the development of a resistant population, resistant plants are likely to occur only in isolated patches. This is the critical time to identify the problem. Options are much more limited if resistance is first diagnosed over large areas. Many of the symptoms of herbicide resistance can also be explained by other causes of spray failure. Evaluate the likelihood of other possible causes of herbicide failure. Start by taking the self assessment on this page. The more questions to which you have confidently answered 'Yes', the more a further investigation of possible resistance is warranted.

The online glyphosate resistance toolkit

You can now assess the level of risk of your own practices via the online risk assessment tool. This tool allows you to check what your current level of risk is for developing glyphosateresistant weed populations on your farm. You can use it more than once, to rate different paddocks on your farm or to try out different scenarios. The tool allows you to enter information on your current practices (including crop rotation, crop density, and weed control tactics) and to identify which weed species

	F ASSESSMENT – LIKELIHOOD OF HERBICIDE ISTANCE	Y/N
1.	Was the rate of herbicide applied appropriate for the growth stage of the target weed?	
2.	Are you confident you were targeting a single germination of weeds?	
3.	Were the weeds actively growing at the time of application?	
4.	Having referred to your spray log book, were weather conditions optimal at the time of spraying so that herbicide efficacy was not compromised?	
5.	Are you confident the suspect plants haven't emerged soon after the herbicide application?	
6.	Is the pattern of surviving plants different from what you associate with a spray application problem?	
7.	Are the weeds that survived in distinct patches in the field?	
8.	Was the level of control generally good on the other target species that were present?	
9.	Has this herbicide or herbicides with the same mode of action been used in the field several times before?	
10.	Have results with the herbicide in question for the control of the suspect plants been disappointing before?	

you usually have to control. The tool will then calculate a glyphosate resistance risk score for the paddock, and a level of risk for each weed identified. The risk assessment tool can show you the areas of greatest risk in your crop rotation and herbicide use, and whether there are any weed species you need to treat carefully. Use these suggestions to get the best results from any changes you make.

The toolkit is available online at the DEEDI Qld website (www. primary.industry.qld.gov.au), click on: Plants > Field crops and pastures > Broadacre field crops > Weed management > Preventing herbicide resistance. The toolkit also contains a herbicide resistance quiz which explains the important drivers in herbicide resistance development.

If you have answered 'Yes' to most of the questions, including 8–10 on field history, or the glyphosate resistance toolkit has indicated your practices and/or species are at high risk, take action:

- · Collect samples and send for testing.
- Remove surviving plants from the field to limit the amount of seed going into the soil seed bank
- Develop a management plan for continued monitoring of the sites and the use of alternative weed control strategies.

Options for herbicide resistance testing

Testing a plant population for the presence of herbicide resistant individuals involves growing large numbers of plants in 'ideal' conditions then at particular growth stages applying the herbicide at a range of rates and observing the responses. Generally, seed is collected from the suspect plants and is sent for testing. However, the dormancy mechanism in some species, such as barnyard grass, creates problems with this process. It is difficult to get sufficient quantities of seed to germinate uniformly in short time frames. An alternative sampling method is to collect actual plants out of the field for the 'Quick test'. This process is limited to seedling/small plants as large numbers need to be collected and posted. Upon arrival they are potted and once re-established, herbicide treatments are applied. In mid-summer conditions plants are less likely to survive the trip than if collected in cooler times of the year. It is recommended to take seed samples from the surviving plants in summer and mark these sites to enable seedling collections in the following autumn or spring if they are needed. The timeline for obtaining results from sending seed samples can be several months. Results are usually available by the end of April when samples are received before January. When plants are sent for Quick tests, results are usually available within 4-8 weeks.

		SAMPLING INFORMATION SHEET FOR HE	RBICIDE RESISTANCE	TESTING		
		Contact Detail	s			
Farm Manager/	Owner:		Address:			
Consultant:			Telephone:			
Preferred contac	ct:	Manager/Owner / Consultant	Email:			
		(details provided on right)	Fax:			
		Sampling Detail	ls			
Weed species:			Sampled by:			
Field Name:			Sampling Date:			
		Field History				
Season	Crop	Herbicides	Timing	Control Level (good/average/poor)		
2008						
2007/08						
2007						
2006/07						
2006						
2005/06						
2005						
2004/05						
2004						
2003/04						

Collecting seed samples:

- Collect 2000–3000 seeds from plants you suspect are resistant. Barnyard grass = 1 cup full. Wild oats = 5–6 cups full.
- If testing >3 modes of action, collect additional seed.
- Avoid collecting large amounts of seed from just a few large plants.
- Follow a 'W' shaped pattern stopping every ~20 m if survivors are widespread. If survivors are localised, collect from within this area.
- Bash seed heads into a bucket to ensure only ripe seed in collected.
- Store samples in a paper bag at room temperature, away from sunlight, moisture and heat. Post as soon as possible.

Collecting plant samples for the Quick test:

- For each mode of action to be tested: collect 50 plants/field from areas where you suspect resistance.
- Gently pull out plants and wash roots.
- Wrap in moistened paper towel.
- Place in waterproof plastic bag.
- Keep in fridge and Express Post on the next Monday.

Sending samples to resistance testing services

Follow the instructions above and send samples together with a completed information sheet to either of the testing services below.

Dr Peter Boutsalis (seed or Quick test) **Plant Science Consulting**

22 Linley Avenue, Prospect SA 5082 Phone: 0400 664 460

Email: info@plantscience consulting.com Website: www.plantscienceconsulting.com John Broster (seed test only) Charles Sturt University

Herbicide Resistance Testing Service,

PO Box 588

Wagga Wagga NSW 2678 Phone: (02) 6933 4001 Email: jbroster@csu.edu.au

SELECT HERBICIDE MOD	ES OF ACTION FOR TES	TING
Mode of Action	Example Herbicides	V
Group A – fops	Topik, Wildcat, Verdict	
Group A – den	Axial	
Group A – dims	Sertin, Select, Achieve	
Group B – sulfonylureas	Ally, Glean, Logran, Hussar	
Group B – imidazolinones	Spinnaker, Midas, OnDuty	
Group B – triazolopyrimidines	Broadstrike, Eclipse	
Group C – triazines	Atrazine, Simazine	
Group D – dinitroanilines	Trifluralin (seed test only)	
Group F – nicotinanalides	Brodal, Jaguar, Tigrex	
Group I – phenoxys	2,4-D	
Group J – thiocarbamates	Avadex (seed test only)	
Group K – chloroacetamides	Dual Gold	
Group L – bipyridils	Paraquat, Diquat	
Group M – glycines	Glyphosate	
Cross Resistance		

These are 'user pays' testing services. Indicative prices: 1 MoA – \$110; 2 MoA – \$170; 3 MoA– \$225; 4 MoA– \$275; 5 MoA – \$305. 4 MoA packages including cross resistance also available from \$325.

Herbicide tolerant technology

Liberty Link Technology

Developed by **Bayer CropScience** in association with the Weeds Subcommittee of the Transgenic and Insect Management Strategies Committee of the Cotton Australia

Liberty 200 Herbicide mode of action

In plants, the glutamine synthetase enzyme combines ammonium with glutamate to form glutamine which can then be used by plants in photosynthetic processes. The active ingredient of Liberty 200 Herbicide, glufosinate-ammonium, inhibits the actions of the glutamine synthetase enzyme, stopping the plant from utilising ammonium. Soon after application of Liberty 200 Herbicide, plant growth ceases and symptoms appear within a couple of days. Initially there is a general yellowing before damaged patches appear which enlarge as the plant wilts and collapses. Within 1–3 weeks the plant dies from the combined effects of ammonia building up to toxic levels within the cells and the breakdown of photosynthesis. Liberty 200 Herbicide is a broad spectrum, post-emergent herbicide that is active against green plant tissue. It has no soil or residual activity. A range of broadleaf weed species are listed on the label. The label recommends weeds be targeted at 2–6 leaf growth stages. As there is only very limited systemic movement of the product through the plant, high water volumes of at least 100 L/ha should be used to ensure thorough coverage. Liberty 200 Herbicide has shown activity on a number of other weeds including summer grasses, common thornapple, bathurst burr and common vetch. However further investigation is required before label claims could be made. For resistance management purposes Liberty 200 Herbicide is a Group N herbicide. This is the first Group N herbicide to be made available for use in cotton. When used in accordance with the label and the Crop Management Plan, weed populations are unlikely to develop resistance to Liberty 200 Herbicide. The use of Liberty Link technology in rotation with non-herbicide tolerant cotton and Roundup Ready technology can help to reduce the selection pressure on weeds from currently used

How does Liberty Link cotton work?

Liberty Link cotton contains the bar gene which allows it to expresses a protein that blocks the action of Liberty 200 Herbicide. The protein, known as phosphinothricin acetyltransferase (PAT) attaches an acetyl group to the glufosinate ammonium molecules, rendering them ineffective. The expression of PAT allows Liberty Link cotton to continue producing glutamine when glufosinate-ammonium is present. The bar gene is derived from the common soil bacterium, Streptomyces hygroscopicus.

How tolerant is Liberty Link cotton to Liberty 200 herbicide?

Liberty Link cotton is tolerant to repeated applications of Liberty 200 Herbicide when used in accordance with

Sampling options when conducting weed audits in Liberty Link cotton.

Audit Method A

Divide the field into quarters. Within each quarter, select 2×50 m linear row (≥ 20 m apart) that are representative of the weed burden prior to application. After application, assess these areas in at least three quarters of the field.

Audit Method B

Field Size	Sample size	Distance between each sampling site
<50 ha	4 x 100 m linear row	Minimum 100 rows
51–100 ha	6 x 100 m linear row	Minimum 100 rows
101–200 ha	8 x 100 m linear row	Minimum 100 rows
>200 ha	2 x 200 m linear row	Minimum 100 rows

label recommendations. A maximum of three over-the-top applications can be made each season. Applications can be made up until 10 weeks prior to harvest.

Weed management with Liberty Link

Before growing Liberty Link cotton, develop and document a weed control strategy for each field, including a rotation program for crop and herbicide usage. For fields with heavy weed burdens, or where there is not the capacity to treat all Liberty Linkcotton in a timely manner, Bayer CropScience recommends the use of residual herbicides prior to or at planting. Below are two example weed situations and suggested integration of Liberty Link technology into the weed management strategies.

Weed situation	IWM strategy
Light infestation of broadleaf	 Glyphosate herbicide pre-plant Liberty 200 Herbicide applied over-the-top of the established Liberty Link crop (1–3 applications) Inter-row cultivation Layby or selective herbicides if required
Heavy infestation of broadleaf weeds, especially peach vine, bladder ketmia and dwarf amaranth	 Residual herbicide incorporated pre or at planting Liberty 200 Herbicide applied over-the-top of the established Liberty Link crop (1–3 applications) Inter-row cultivation Layby or selective herbicides if required

Managing Liberty Link volunteers

Control of cotton volunteers is an important component of rotational flexibility and an essential component of farm hygiene. Cultivation and herbicides are the two most common methods of controlling volunteer cotton. Cultivation is an effective and efficient method of managing all types of volunteer cotton. Seedling, established and ratoon growth stages of conventional, Roundup Ready and Liberty Link varieties can be controlled with cultivation. Herbicides are only able to effectively control seedling volunteers. Liberty Link seedling volunteers are susceptible to Roundup Ready herbicide. Alternative herbicide options are Spray. Seed, Hammer and Pledge.

Where Liberty Link seedling volunteers are present in a Liberty Link crop, the options for their control are the same as those for removing conventional cotton volunteers from conventional cotton. Refer to WEEDpak for strategies to control cotton volunteers or page 118.

GM weed technology WEEDS

Audit requirements in the Liberty Link crop management plan

Growers holding a Liberty Link licence are required to conduct a weed audit in each field of Liberty Link cotton that has been treated with Liberty 200 Herbicide. The weed audit should take place prior to crop canopy closure and from 14–18 days after an application of Liberty 200 Herbicide. The person conducting the audit is required to have undertaken the optional, additional module covering Weed Audits as part of successfully completing the Liberty Link Cotton and Liberty 200 Herbicide Accreditation Program with Bayer CropScience.

To sample the field, use Audit Method A where the distribution of weeds within the field prior to applying Liberty 200 Herbicide is known. Sample using Audit Method B where weed distribution prior to application is unknown. Methods A and B are shown on page 99. Within the sample areas, identify surviving weeds and volunteers. For each survivor, rate the infestation severity. Complete a Liberty Link Cotton Weed Management Audit form to capture the observations of the audit sampling, general comments on weed control and remedial action taken to control any surviving weeds prior to seed set. Return completed forms to Bayer CropScience by 31 December. Audit data will be collated and reported to the TIMS Weeds Subcommittee.

Application guidelines

The Liberty 200 Herbicide is not significantly translocated as an active herbicide throughout the plant and therefore will only kill that part of the green plant that is contacted by the spray. Best results are achieved when applications are made to young weeds that are actively growing under warm, humid conditions. (eg. temperatures below 33°C and relative humidity above 50%.)

Pre-plant paddock preparation

Control all existing weeds by cultivation or by using a knockdown herbicide such as glyphosate or paraquat.

Over-the-top applications

Liberty 200 Herbicide can be applied over-the-top of Liberty Link cotton from emergence through to 10 weeks prior to harvest. Application can only be made using a ground boom sprayer. Application volumes of at least 100 L water/ha through flat fan nozzles with droplet size of 200–300 microns are recommended for most situations. Up to 3 over-the-top applications can be made each season.

Tank mixes with Liberty 200 Herbicide

Liberty 200 Herbicide may be tank mixed with some other herbicides and insecticides. Check with your local Bayer CropScience representative for tank mixing compatibilities.

Keeping good field records

It is essential that farmers keep records of the crops planted, the weeds present and the weed control methods each growing season. Such information is vital when planning crop and herbicide rotations to manage weeds, volunteers and herbicide resistance. Ensure good records are kept in relation to Liberty Link cotton and can be made available to Bayer CropScience or the regulatory authorities as required. Keep records for at least 2 years after harvest. As a minimum, maintain records of:

- Paddock history crop rotation, weeds present, herbicide applications, the use of non-herbicide weed controls, other management practices influencing weed control.
- A farm map with field reference numbers and varieties sown.

 Seed bag labels and accompanying information, especially seed lot numbers.

Further Information:

Website: www.bayercropscience.com.au Technical enquiries: 1800 804 479

Roundup Ready Flex technology

Monsanto Australia Limited, Graham Charles and Tracey Leven, CRDC

How does Roundup Ready Flex cotton work?

The primary effect of glyphosate on plants is the inhibition of the production of EPSPS. EPSPS is an enzyme responsible for the production of amino acids essential for protein construction and plant growth. Monsanto identified a soil bacterium that produces a modified form of the EPSPS enzyme, the CP4 strain. The CP4 strain of EPSPS is not inhibited by Roundup Ready herbicide formulations (including Roundup Ready herbicide and Roundup Ready herbicide with PLANTSHIELD). Roundup Ready Flex cotton plants produce the modified form of EPSPS, so are able to continue producing amino acids and proteins after Roundup Ready herbicide has been applied. Roundup Ready Flex cotton contains two copies of the CP4 EPSPS gene and a promoter sequence resulting in expression in both the vegetative and reproductive parts of the plant. Roundup Ready Flex cotton is therefore able to tolerate applications of glyphosate in its vegetative (pre-squaring) and reproductive (squaring, flowering, boll development and maturation) stages. Roundup Ready herbicide may be applied over the top (OTT) of Roundup Ready Flex cotton up to four times between emergence and 22 nodes, while one application is allowed between 60% bolls open and harvest. However, the total amount of herbicide applied to any one crop must not exceed 6 kg/ha in a total of 4 applications as illustrated in Figure 10. Crops that are intended for seed production must not have an application of Roundup Ready herbicide past the 60% bolls open stage.

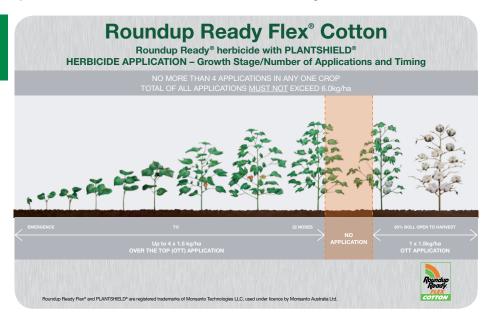
The full-plant glyphosate tolerance of Roundup Ready Flex means that applications of glyphosate can be made irrespective of the rate of crop growth or the number of days between applications.

How tolerant is Roundup Ready Flex to Roundup Ready Herbicide?

Trials examining plant growth, development, yield and fibre

quality were conducted in Australia by Monsanto as part of the phenotypic evaluation of Roundup Ready Flex cotton. These trials were conducted at eight locations over two seasons to assess whether Roundup Ready Herbicide applied to Roundup Ready Flex cotton at different growth stages altered the agronomic characteristics of the plant when grown under Australian conditions.

There were no significant differences in first position fruit retention, yield, micronaire or fibre length between unsprayed Roundup Ready Flex, unsprayed conventional cotton and Roundup Ready Flex cotton treated with up to three times the registered quantity of herbicide. A new formulation of Roundup Ready Herbicide is now registered for use in Roundup Ready Flex cotton. The new formulation contains PLANTSHIELD, a crop safener for improved performance in humid conditions. Roundup Ready Herbicide* with PLANTSHIELD* was first available during the 2009–10 cotton season. The new formulation contains the same quantity of active ingredient (690 g/kg), as the previous formulation and has been extensively tested over several seasons and at multiple locations to ensure maximum crop safety and efficacy.


Weed management in Roundup Ready Flex

Roundup Ready Flex cotton offers growers an increased margin of crop safety, a more flexible window for OTT applications of Roundup Ready Herbicide, and the potential to improve the efficacy of weed control. However Roundup Ready Flex cotton should be viewed as a component of an Integrated Weed Management (IWM) system, not as a solution to all weed management scenarios. Weeds species with natural tolerance to glyphosate will be selected for with repeated glyphosate applications, resulting in species shift. The most effective, economic and sustainable weed management system for growers will, therefore, be achieved using an integrated (IWM) approach.

Know your field history

A combination of the relative effectiveness of previous herbicide programs and other agronomic practices employed on a farm is likely influence the weed species present in any field. The correct identification and a basic understanding of the biology and ecology of the weeds present in a field are essential elements in the design of a successful weed

FIGURE 10: Application windows for over the top Roundup Ready Herbicide and Roundup Ready Herbicide with PLANTSHIELD.

GM weed technology

management program. It is critical that the appropriate herbicide and herbicide rate are chosen for the target weed species. By knowing field history, growers can determine which weed control tools they should use and when they should be employed to achieve the best results.

Pre-plant knockdown

Starting with a 'clean' field provides seedling cotton with the best possible conditions to emerge and to develop, unhindered by the competitive effects of weeds. Pre-plant weed control can be achieved using tillage and/or the appropriate registered herbicides. The use of glyphosate tank mixes or herbicides with other modes of action is encouraged prior to planting to strengthen the IWM program. It is important that any cotton volunteers are controlled at this stage.

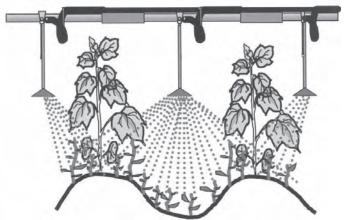
The role of residual herbicides

Residual herbicides should be used where appropriate in the Roundup Ready Flex system. The nature of pre-emergence residual herbicides often requires that they be applied in anticipation of a weed problem. Consideration for the use of residual herbicides in a weed control program for any given field should be determined based on the knowledge of the field's history.

The first OTT (over-the-top) application

Cotton is a very poor competitor and is sensitive to early season weed competition. The longer OTT window with Roundup Ready Flex may tempt growers to delay the first OTT application of Roundup Ready Herbicide in the hope that multiple weed germinations can be controlled with a single spray. Whilst competitive affects will vary according to weed species and weed density, it is commonly recognised that good weed control in the first 6-8 weeks following crop emergence maximises cotton yield potential. Delaying the initial OTT application may result in growers having to target weeds later in the season that are beyond the growth stage for optimum control

Subsequent OTT (over-the-top) applications


After the first OTT application, the use of subsequent OTT applications (up to a maximum of four), should be made according to the presence of new weed germinations. In any field, a mix of weed species will commonly exist. Correct identification of weeds is very important as this will have a direct impact on the rate selection and application timing(s) chosen. Select the timing and application rate of Roundup Ready herbicide based upon the most difficult to control weed species in each field.

Inter-row cultivation

Inter-row cultivation is a relatively cheap and non-selective method of weed control. In irrigated cotton, it also assists in maintaining furrows to facilitate efficient irrigation. In a Roundup Ready Flex crop, inter-row cultivation contributes to the diversity of weed control methods being employed and, as such, is a valuable component of an IWM strategy.

Lay-by residual application

Growers and their advisors are encouraged to scout fields prior to row closure and to combine these observations with their historical knowledge of individual fields to ascertain the need for a lay-by herbicide application. A lay-by application should be used on fields where there is an expectation of a significant emergence of weeds later in the season.

Directed application between 16 and 22 nodes targets weeds along the plant line.

Pre-harvest application

One application of Roundup Ready Herbicide may be made OTT between 60% boll open and harvest. In most circumstances, good weed control earlier in the crop should render the pre-harvest application redundant. However, if late season weeds are present, a pre-harvest application can be used to reduce seed set and improve harvest efficiency. Pre-harvest applications of glyphosate will not provide regrowth control in Roundup Ready Flex cotton.

Audit requirements in the Roundup Ready Flex crop management plan

A legal requirement of the approved release of Roundup Ready Flex cotton is that all persons growing and managing Roundup Ready Flex cotton crops comply with the Crop Management Plan (CMP). Within the CMP, there are the requirements for a Planting Audit and a Weed Management Post Spray Survey.

Planting audit

The Technology Service Provider (TSP) is responsible for completion of the planting audit by no later than December 15, as set down in the Technology User's Agreement (TUA). The information required includes:

- Number of hectares sown:
- Location of Roundup Ready Flex cotton on the farm unit; and,
- Date/s of sowing.

Weed management post spray surveys

Only accredited TSPs will be able to conduct the Weed Management Post Spray Survey.

TSPs will undertake the Post Spray Survey on a percentage of fields growing Roundup Ready Flex cotton in accordance with Table A. TSPs will assess al weeds remaining ten to fourteen days after an "over the top" (OTT) application of Roundup Ready Herbicide or Roundup Ready Herbicide with PLANTSHIELD at a minimum of 6 nodes crop growth, and not exceeding 16 nodes.)

TABLE A: Weed survey requirements in field					
Field size Assessment of surviving weeds					
< 50 ha	4 x 100 metres linear row				
51–100 ha	6 x 100 metres linear row				
101–151 ha	8 x 100 metres linear row				
> 150 ha	8 x 200 metres linear row				

Table A outlines how to assess the field for the presence of surviving weeds. The minimum distance between each assessment (ie each 100 metres linear row) must be 100 rows. In addition to the assessment of surviving weeds, the TSP is required to record:

- Any remedial action taken to stop seed set of surviving weeds. Weeds identified to have survived Roundup Ready Herbicide applications must be controlled by an alternative management strategy in order to prevent those weeds from setting seed.
- Comments about the level of weed control achieved in Roundup Ready Flex cotton, including the efficacy of remedial actions undertaken.
- Adverse event reporting. Growers and TSPs are required to report any adverse event, such as suspected weed resistance, to Monsanto as soon as it is identified.

Monsanto will discuss the data collected with relevant industry weed scientists and any findings will be reported to the TIMS Herbicide Tolerant Crop Technical Panel.

Managing Roundup Ready Flex Volunteers

A major consideration in the development of an IWM plan for Roundup Ready Flex is the management of herbicide tolerant cotton volunteers. Plans need to be made to use cultural control options and herbicides with alternate modes of action in fallows and subsequent crops to control volunteers.

Cultural control options

Minimising the presence of lint/seed from last year's crop on this year's plant line will assist in managing cotton volunteers. Operations such as moisture seeking, bed renovation and fertiliser application all assist in redistributing cotton lint away from the plant line and into the furrow where inter-row cultivation and/or shielded spraying can be used for control. Pre-watering stimulates volunteer germination and emergence prior to crop establishment, providing the opportunity to target volunteers with broad spectrum herbicides.

Herbicide options

Currently there are four registered herbicide options for the control of volunteer cotton:

- 1. Paraquat/Diquat (Spray.Seed, Revolver)
- 2. Bromoxynil (Bromicide 200)
- 3. Carfentrazone ethyl (Hammer 240 EC)
- 4. Paraquat/Amitrole (Alliance)

These options are all effective in controlling volunteer cotton, however the following points should be considered:

- The effectiveness of these herbicides on conventional, Roundup Ready Flex cottons is generally limited to volunteers no more than 4–6 leaf. The size of the volunteers needs to be assessed before a herbicide selection is made.
- Larger plants will be more difficult to control with a single pass.
- Using the recommended water volumes for application is imperative for effective control.
- Other weeds within the field should be taken into consideration when making a herbicide selection.
- Bromoxynil and Carfentrazone ethyl can be mixed with glyphosate, which may assist when a range of other weeds is also present.
- It is important to read all labels to confirm the correct application timings and rates. Label directions must be followed.

Ratoon Cotton

Ratoon or 'stub' cotton is cotton that has 're-grown' from root stock still in the ground from the previous season. Ratoon cotton is more common in minimum tillage systems. These plants are inherently difficult to control with herbicide due to their large root mass and often relatively small leaf area. Ratoon conventional, Roundup Ready and Roundup Ready Flex cotton plants will not be controlled by Roundup Ready Herbicide or glyphosate products. The most effective means of controlling ratoon cotton is achieved through effective root cutting of cotton stalks, followed by 'centre-busting'. Care needs to be taken that during 'centre-busting' to ensure the tool does not run off the bed centre and miss stalks that may regrow in the following spring.

Application guidelines

Timing options

The Roundup Ready Herbicide label permits:

- Applications in fallow, prior to sowing the Roundup Ready Flex crop, with the maximum rate applied dependent on the targeted weed/s. Application may be made by ground rig sprayer or by aircraft.
- Up to four applications of Roundup Ready Herbicide between crop emergence and 22 nodes of crop growth, with a maximum of 1.5 kg/ha being applied in any single spray event.
- An option for a pre-harvest application, alone or in tank mix with Dropp, once the crop is 60% open and immature bolls cannot be cut with a sharp knife. The maximum herbicide rate for pre-harvest use is 1.5 kg/ha. Application may be made by ground rig sprayer or by aircraft.
- Not more than four applications and 6.0kg of Roundup Ready Herbicide may be applied through all growth stages of Roundup Ready Flex cotton in any one growing season.

Tank-mixtures with other herbicides or insecticides are not recommended for over-the-top applications of Roundup Ready Herbicide or Roundup Ready Herbicide with PLANTSHIELD due to the potential for reduced weed control or crop injury to result. (Refer to Label for Directions for use – Roundup Ready Flex cotton).

Over-the-top applications

Before an over-the-top application, it is absolutely essential to thoroughly decontaminate the sprayer of any products which might damage the crop, particularly sulfonylurea and phenoxy herbicides. For ground rig sprayers, a spray volume of 50-80 litres per sprayed hectare is recommended for optimum performance. Nozzles and pressure settings must be selected to deliver a minimum of a COARSE spray quality (American Society of Agricultural Engineers (ASAE) S572) at the target. For aerial application, nozzles and pressure settings must be selected to deliver a minimum of a COARSE spray quality (ASAE SS572) at the target. A minimum total application volume of 40L per hectare needs to be used. Do not apply Roundup Ready herbicide or Roundup Ready Herbicide with PLANTSHIELD by aircraft at temperatures above 30°C or if relative humidity falls below 35%.

Other Sources of Information:

Roundup Ready Flex Cotton Technical Manual, Monsanto Australia Ltd.

Cotton Weed Control Guide

Tracey Leven, CRDC

Registration of a herbicide is not a recommendation for the use of a specific herbicide in a particular situation. Growers must satisfy themselves that the herbicide they choose is the best one for the crop and weed. Growers and users must also carefully study the container label before using any herbicide, so that specific instructions relating to the rate, timing, application and safety are noted. This publication is presented as a guide to assist growers in planning their herbicide programs.

IMPORTANT— avoid spray drift

Take every precaution to minimise the risk of causing or suffering spray drift damage by:

- Planning your crop layout to avoid sensitive areas, including homes, school bus stops, waterways, grazing land and nontarget crops.
- Ensuring that all spray contractors have details of any sensitive areas near spray targets.
- Consulting with neighbours to minimise risks from spraying near property boundaries. Keep neighbours informed of your spraying intentions near property boundaries. Make it clear that you expect the same courtesy from them.
- · Carefully following all label directions.
- Paying particular attention to wind speed and direction, air temperature and time of day before applying pesticides using

buffer zones as a mechanism to reduce the impact of spray drift or overspray.

 Keeping records of chemical use and weather conditions at the time of spraying.

Spray Log Books

To assist in record keeping for pesticide applications, Spray Log Books can be purchased from:

DEEDI Qld, cost \$7.50 plus postage and handling. Contact DEEDI Qld in Toowoomba – 07 4688 1200 or;

in Dalby - 07 4669 0800 to place an order.

DPI NSW, cost \$12.00 plus postage and handling. Contact DPI NSW, Yanco – 1800 138 351.

ABBREVIATIONS USED IN TABLES 28–35

AC = Aqueous concentrate DF = Dry flowable granule EC = Emulsifiable concentrate MSolC = Soluble concentrate SP = Soluble powder WDG = Water dispersible granule

L = Liquid WP = Wettable powder SC = Suspension concentrate

TABLE 28: Con	TABLE 28: Control of weeds in dry channels						
Active ingredient	Mode of Action group	Concentration and formulation	Application rate of product	Comments			
Amitrole + ammonium thiocyanate	F	250 g/L + 220 g/L SC	0.28–4.5/100 L water	Controls a wide range of plants from seedling grasses, at low water rates, to perennial grasses, at high rates. Controls some young broadleaf weeds.			
Diuron	С	500 g/L SC 500 g/L SC 900 g/kg DF, WG	70–150L/ha 20–40 L/ha 22 kg/ha (Qld) 40 kg/ha (NSW)	QLD registration. NSW registration. Channels must be flushed after application.			
Glyphosate	M	Various	Various	Rates vary with formulations and species present. Choose a glyphosate product that has a specific irrigation channel registration. Check label for details. Do not allow water to return to channels for 4 days.			
lmazapyr + glyphosate	B + M	150 g/L + 150 g/L LQ SC	5.0 L/ha	For best results apply in early autumn with minimal weed growth. Allow six weeks before channel is re-used.			
Pendimethalin	D	330 g/L EC 440 g/L AC	4.5–9.0 L/ha 3.4–6.75 L/ha	If 25–50 mm rain has not fallen within 14 days flush			

TABLE 29: Control of weeds around aquatic areas					
Active ingredient	Mode of Action group	Concentration and formulation	Application rate of product	Comments	
Glyphosate	M	Various	Various	Rates vary with formulation and species present. Choose a glyphosate product that has a specific aquatic weed control registration. See label for details for application around aquatic areas.	

WEEDS

TABLE 30: Weed co Active ingredient	Mode of	Concentration and	Application rate	Comments
Active ingredient	Action group	formulation	of product	Comments
2,4-D as the iso- propylamine salt	I	225 g/L AC 300 g/L AC	0.8–3.6 L/ha 0.66–2.7 L/ha	For use with glyphosate at recommended rates. Check label for details.
Amitrole + paraquat	Q + L	250 g/L + 125 g/L	2–4 L/ha	Sowing can occur immediately after application
Bromoxynil	С	200 g/L EC	1.4–2.1 L/ha	Controls peachvine, climbing buckwheat and cotton volunteers. Spray volumes above 50 L/ha are recommended. Complete coverage is essential.
Carfentrazone-ethyl	G	240 g/L EC	0.025–0.1 L/ha	Apply as a tankmix with glyphosate or products containing paraquat
Dicamba	I	500 g/L AC 700 g/kg WG	0.16–0.56 L/ha 0.115–0.4 kg/ha	Up to 14 days plant back period.
Fluometuron	С	900 g/kg GR, WG	1.5–3.1 kg/ha	Controls many broadleaf weeds. Apply just prior to incorporation. High rate for heavier soils. Will require further band application on top of hill immediately after planting. See label.
Fluometuron + prometryn	С	250 g/L + 250 g/L AC, SC 440 g/kg + 440 g/kg DF, WG	2.5–5.0 L/ha 1.4–2.9 kg/ha	Controls many annual grasses and broadleaf weeds. Incorporate to 5 cm. Will require further band application on top of hill immediately after planting.
Flumioxazin	G	500 g/kg WG	30 g/ha + tank mix parner 45 g/ha	Addition to knockdown products will increase the speed of activity and may improve final control. For control of volunteer cotton. Always apply with a recommended adjuvant.
Fluroxypyr	I	200 g/L EC	0.75–1.5 L/ha	Controls certain broadleaf weeds post-emergent. See label for details of mixtures with glyphosate and plant back restrictions.
Glyphosate	М	Various	Various	Controls most annual grasses and broadleaf weeds. Refer to label for rates on specified weeds and recommendations.
		690 g/kg WG	0.265–1.5 kg/ha	In fallows and prior to sowing Roundup Ready Flexcotton only
Metolachlor	K	720 g/L EC	2.0 L/ha	Controls certain annual grasses and Wandering Jew. Rain or irrigation needed within 10 days of application or incorporate mechanically.
Norflurazon	F	800 g/kg GR	2.3–4.2 kg/ha	Controls many annual grasses and broadleaf weeds including nutgrass. Refer to label for plant back period.
Oxyfluorfen	G	240 g/L EC	0.075 L/ha	Use with glyphosate at recommended rates.
Paraquat	L	250 g/L SL	1.2–2.4 L/ha	Controls many annual grass and broadleaf seedlings.
Paraquat + diquat	L	135 g/L + 115 g/L SL	1.2–2.4 L/ha	Controls most annual grasses and broadleaf weeds.
Pendimethalin	D	330 g/L EC 440 g/L 455 g/L AC	3.0 L/ha 2.25 L/ha 2.2 L/ha	Controls annual grasses and some broadleaf weed seedlings. Incorporate within 24 hours. Check label for details.
Prometryn	С	500 g/L AC, SL 900 g/kg DF, WG	2.2–4.5 L/ha 1.2–2.5 kg/ha	Apply as pre-emergent treatment onto bare, moist soil or as an early post-emergent treatment to weeds after cultivation. Use low rate for short-term weed control.
s-Metolachlor	K	960 g/L EC	1.0 L/ha	Rain/irrigation needed within 10 days of application or incorporate mechanically. Controls most annual grasses.
Triclopyr	1	600 g/L EC	0.08–0.16 L/ha	Melon weed control. 14 days plant back for cotton.
Trifluralin	D	480 g/L EC 500 g/L EC	1.2–2.3 L/ha 1.1–2.25 L/ha	Rate is soil type dependent. Incorporate within 4 hours. Controls seedling and annual grasses and some broadleaf weeds. See label for additional options for winter fallow control.

TABLE 31: We	TABLE 31: Weed control at planting						
Active ingredient	Mode of Action group	Concentration and formulation	Application rate of product	Comments			
Chlorthal dimethyl	D	900 g/kg WG	5.0–12.5 kg/ha	Apply at time of planting. Use higher rate for areas underirrigation.			
Diuron	С	900 g/kg DF, WG	1.0-2.0 kg/ha	Controls many broadleaf weeds and annual grasses. Apply at planting or within 7 days of planting and prior to cotton emergence.			
Fluometuron	C	500 g/L AC, SL 900 g/kg DF, WG	1.8–3.6 L/ha 1.5-3.1 kg/ha	Controls many broadleaf weeds and annual grasses. Apply just prior to incorporation. Use in conjunction with pre-plant application. Apply immediately after sowing as an overall or band treatment. Minimum band width 40cm. Use higher rate on heavier soils. Check label for details.			
Fluometuron + prometryn	С	250 g/L + 250 g/L AC, SL 440 g/kg + 440 g/kg DF, WG	3.0–5.0 L/ha 1.7–2.9 kg/ha	Controls many broadleaf weeds and annual grasses. Apply just prior to incorporation. Use in conjunction with pre-plant application. Apply as a band (minimum band width 40 cm) or blanket application. High rate on heavier soils. Check label for details.			
Metolachlor	K	720 g/L EC 960g/L EC	2.0 L/ha 1.5L/ha	Controls certain annual grasses and Wandering Jew. Rainor irrigation needed within 10 days of application or incorporate mechanically.			
Paraquat + diquat	L	135 g/L + 115 g/L SL	0.8–2.4 L/ha	Controls most annual grasses and broadleaf weeds.			
s-Metolachor	K	960 g/L EC	1.0 L/ha	Controls most annual grasses. Rain or irrigation needed within 10 days of application or incorporate mechanically.			

Active	Mode of	Concentration and	Application rate	Comments
ingredient	Action group	formulation	of product	
Diuron	С	500 g/L SL 900 g/kg GR, WG	1.8–3.5 L/ha 1.0–2.0 kg/ha	Controls many broadleaf weeds and annual grasses. Avoid light soils. Do not apply more than once per season. Spray immediately after planting
Fluometuron	C	500 g/L AC, SL 900 g/kg DF, WG	4.5–7.2 L/ha 2.4–4.0 kg/ha	Controls many broadleaf weeds and annual grasses. Minimum band width 40 cm. Apply to moist soil or significant rain or irrigation required within 3–5 days of application. Severe plant injury may result if heavy rain occurs between sowing and emergence. High rates apply to heavier soils.
Fluometuron + prometryn	С	250 g/L + 250 g/L AC, SL 440 g/kg + 440 g/kg DF, WG	3.0–5.0 L/ha 1.7–2.9 kg/ha	Controls many broadleaf weeds and annual grasses. Apply to moist soil, significant rain or irrigation required within 3–5 days of application. Severe plant injury may result if heavy rain occurs between sowing and emergence. Do not use on light sandy soils or soils with low organic content. Check label for details.
Metolachlor	K	720 g/L EC 960g/L EC	2.0 L/ha 1.5L/ha	Controls certain annual grasses and Wandering Jew. Rain or irrigation needed within 10 days of application or incorporate mechanically.
Paraquat	L	250 g/L SL	1.2–2.4 L/ha	Controls most annual grasses and broadleaf weed seedlings.
Paraquat + diquat	L	135 g/L + 115 g/L SL	0.8–2.4 L/ha	Controls most annual grasses and broadleaf weeds.
Pendimethalin	D	330 g/L EC 440 g/L EC 455 g/L AC	4.5 L/ha 3.4 L/ha 3.3 L/ha	Controls annual grasses and certain broadleaf weeds. Use when incorporation prior to sowing is impractical and where the seedbed tilth is fine and free of large stones and trash. Apply within 48 hours after sowing.
Prometryn	С	500 g/L AC, SL 900 g/kg DF, WG	3.3–4.5 L/ha 1.8–2.5 kg/ha	Controls many broadleaf weeds and thins annual grasses. Apply onto bare moist soil or irrigate within three days after application.
s-Metolachlor	K	960 g/L EC	1.0 L/ha	Controls most annual grasses. Rain or irrigation needed within 10 days of application or incorporate mechanically.

TABLE 33	TABLE 33: Weed control pre harvest						
Active ingredient	Mode of Action group	Concentration and formulation	Application rate of product	Comments			
Glyphosate	M	Various	Various	Controls Bathurst burr, Noogoora burr, winter annual weeds. Use higher rates for Nutgrass control. May be applied alone orwith harvest aid. Apply when 60% bolls are open.			
		690 g/kg WG	0.710–1.5kg/ha	Registered for use in Roundup Ready Flex cotton. Apply when 60% bolls are open. Check label for details.			

WEEDS

Active ingredient	Mode of Action group	Concentration and formulation	Application rate of product	Comments	
Butroxydim	А	250 g/kg WG	0.12 kg/ha or 0.18 kg/ha	Low rate for grass seedlings pre-tillering and high rate for 2–3 tillers. Always add the recommended spray adjuvant.	
Chlorthal dimethyl	D	900 g/kg WG	(6.0–11.0 kg/ha)	Layby only. Do not apply after bolls open.	
Clethodim	А	240 g/L EC	0.25-0.375 L/ha	Apply at 2–5 leaf stage. Read label for details.	
Diuron	С	500 g/L SL 900 g/kg DF, WG	2.0–3.5 L/ha 1.0–2.0 kg/ha	Controls many broadleaf weeds and annual grasses. Cotton should be at least 30 cm high. Use as a directed spray. Avoid spray drift. Do not applymore than once per season.	
Fluazifop-p	Α	212 g/L EC	0.75–1.0 L/ha	High rate for actively growing weeds, 5 leaf – early tillering.	
Fluometuron	С	500 g/L AC, SL 900 g/kg DF, WG	2.8-5.6 L/ha 1.5–3.0 kg/ha	Controls many broadleaf weeds and annual grasses. Crop should be more than 15 cm high. Weeds should be less than 5 cm high for early directed spraying and less than 8 cm high for lay-by treatments. Use with recommended surfactant.	
Fluometuron + prometryn	С	250 g/L + 250 g/L AC, SL 440 g/kg + 440 g/kg DF, WG	1.5–2.5 L/ha (2.0–3.5 L/ha) 0.855–1.4 kg/ha (1.1–1.9 kg/ha)	QLD registration only for low rate, early spray. Rates in brackets for lay-by spraying. Controls many broadleaf weeds and annual grasses. Crop should be 30–50 cm high, weeds not more than 8 cm. Use as a directed spray with recommended surfactant.	
Flumioxazin	G	500 g/kg WG	60 or 90 g/ha	Apply as a shielded spray. Do not contact cotton foliage.	
Glufosinate- ammonium	N	200 g/L SL	3.75 L/ha in 100 L water	Only apply to Liberty Link cotton varieties. Maximum 2.25kg a.i./ha/season (3 applications). As a contact herbicide coverage is critical to effectiveness.	
Glyphosate	M	Various	Various	Apply with shielded sprayer. Do not apply in cotton less than 20 cm high. Rates vary with formulations and species present.	
		690 g/kg WG	0.52–1.5 kg/ha	Only apply over-the-top to Roundup Ready Flex cotton varieties up to 22 node stage of growth. No more than 4 applications in total are permitted.	
Halosulfuron– methyl	В	750 g/kg GR 750 g/kg WG	65–130 g/ha	Shielded srayer application in irrigated cotton only. Apply in crops at least 20 cm high but before first flower. Contact with cotton may cause severe injury. See label for details.	
Haloxyfop-r	А	130 g/L EC 520 g/L EC	0.4–0.6 L/ha 0.1–0.15 L/ha	Actively growing seedling grasses from 2 leaf to tillering up to 15 cm. Always use the recommended spray oil. Apply from 2 leaf to before onset of flowering.	
MSMA	Z	720 g/L LQ, SL 800 g/L LQ, SL	3.1 L/ha 2.8 L/ha	Controls Nutgrass, Xanthium burrs and Johnson grass. Apply as a band or as a directed spray after cotton is 7 cm high but before first flower opens.	
Paraquat	L	250 g/L AC, SL	1.2–2.4 L/ha	Inter-row weed control, shielded spray. Use low rates for seedling weeds. Use high rates for mature stages.	
Prometryn	С	500 g/L AC, SL 900 g/kg GR, WG	1.1–2.2 L/ha (2.2–4.4 L/ha) 0.61–1.2 kg/ha (1.2–2.5 kg/ha)	Controls many broadleaf weeds and thins annual grasses. Rates in brackets are for lay-by spraying. Weeds should be less than 8 cm high. Use as a directed spray with recommended surfactant.	
Propaquizafop	А	100 g/L EC	0.2–0.9 L/ha	Apply when weeds are actively growing. Always apply with an adjuvant. Refer to label for further details.	
Pyrithiobac sodium	В	850 g/kg SP	0.03–0.12 kg/ha 0.06–0.09 kg/ha	Ground application only. Aerial application for a salvage treatment for sesbania pea. NSW (Macintyre Valley) and QLD registration only.	
Sethoxydim	А	186 g/L EC	1.0 L/ha	Apply when most grass weeds are in the 2–6 leaf stage and are actively growing. Refer to label for details.	
Trifloxysulfuron sodium	В	750 g/kg WG	0.015 kg/ha or 0.03 kg/ha	Controls certain broadleaf weeds and suppresses Nutgrass. Use the low rate for over-the-top application from 2–8 leaf stage or as a directed spray until row closure. Apply the high rate as a directed application only.	

TABLE 35: Herbic	ide trade na	ames and marketers – Regi	stered chemicals as at June	7, 2011
Active ingredient	Mode of Action group	Concentration and formulation	Trade name	Marketed by
2,4-D present as the	1	225g/L AC	2,4D isopropyl	eChem
isopropylamine salt		225 g/L AV	Smash	ChemAg
		300 g/L AV	Aminoz CT	Sanonda
		300 g/L AV	2,4-D 300	Farmalinx
		300 g/L	2,4-D 300	Innova
		300 g/L AV	2,4-D 300	Ospray
		300 g/L	2,4-D Amine 300	United Farmers Co-op
		300 g/L		·
			2,4-D IPA 300	Apparent
		300 g/L	2,4-D IPA 300	Cropsmart
		300 g/L	2,4-D IPA 300	Dow Agriscien ces
		300 g/L	2,4-D IPA 300	Echem
		300 g/L AV	2,4-D IPA 300	Halley
		300 g/L	2,4-D IPA 300	NAADCO
		300 g/L AV	2,4-D IPA 300	Rainbow
		300 g/L	2,4-D IPA 300	Rygel
		300 g/L AV	2,4-D IPA 300	Tradelands
		300 g/L	Amine 300	Agrismart
		300 g/L	Amine 300 Amine 300	9
				Agnetics
		300 g/L AV	Amine 300	Conquest
		300 g/L	Amine 300	Country
		300 g/L	Amine 300	Ruralchem
		300 g/L AV	Amine 300	Sipcam
		300 g/L AV	Amine 300	Titan AG
		300 g/L AV	Amine 300	Genfarm
		300 g/L AV	Abound	Dow Agrosciences
		300 g/L	Applause	Agriwest
		300 g/L AV	Cobber	CropCare
		300 g/L AV	Crown 2,4-D IPA	Pacific Agrisciences
		300 g/L AV	Glymate 300	Generex
		300 g/L AV	Inca 300	Proterra
		300 g/L AV	Ken-Star 300	Kenso
		300 g/L AV	Mate 300	Growchoice
		300 g/L AV	Putra Amine 300	Hextar
		300 g/L AV	Rodamine 300	Rotam
		300 g/L AV	Smash 300	Imtrade
		300 g/L AV	Surpass 300	Nufarm
		3	· · · · · · · · · · · · · · · · · · ·	
		300 g/L AV	Weeds Out 300	Biotis
		300 g/L AV	Zulu 300	Farmoz
		400 g/L	Abound	Dow Agrosciences
		450g/L	Kenstar 450	Kenso
Amitrole + ammonium	Q	250 g/L + 220 g/L SL	Aggravate8	Agriwest
thiocyanate		250 g/L + 220 g/L SL	Amitrole T	ChemAg
		250 g/L + 220 g/L SL	Amitrole T	Nufarm
		250 g/L + 220 g/L SL	Weedeath	Cyndan
Anaituala i managunat	0 . 1	-		
Amitrole + paraquat	Q + L	250 g/L + 125 g/L	Alliance	Crop Care
Bromoxynil	C	200 g/L EC	Bromo 200	Agriwest
		200 g/L EC	Bromox 200	Imtrade
		200 g/L EC	Bronco 200	Farmoz
		200 g/L EC	Bromicide 200	Nufarm
		200 g/L EC	Bromoxynil 200	4Farmers
		200 g/L EC	Bromoxynil 200	Accensi
		200 g/L EC	Bromoxynil 200	Genfarm
		200 g/L EC	Bromoxynil 200	Titan AG
		200 g/L EC	Firefighter	Ozspray
Butroxydim	А	250 g/kg WG	Factor WG	Crop Care
Carfentrazone-ethyl	G	240 g/L EC	Hammer	Crop Care
	_	240 g/L EC	Task	Nufarm
Chlorthal directle	D	-		
Chlorthal dimethyl	D	750 g/kg WG,	Clorthal dimethyl 750WG Dacthal	Macphersons
		900 g/kg WG	900 WG	Crop Care
		900 g/kg WG	Pterodactyl	Imtrade

TABLE 35: Herbi	icide trade na	ames and marketers – Regi	stered chemicals as at Jur	ne 7, 2011 (continued)
Active ingredient	Mode of Action group	Concentration and formulation	Trade name	Marketed by
Clethodim	А	240 g/L EC	Akodim	Aako
		240 g/L EC	Blade 240	United Farmers
		240 g/L EC	Carbine 240	Axichem
		240 g/L EC	Cleodim	Grow Choice
		240 g/L EC	Cletho 240	Sanplus
		240 g/L EC	Cletho 240 EC	Kenso Agcare
		240 g/L EC	Clethim	Farmalinx
		240 g/L EC	Clethodim	Chemforce
		240 g/L EC	Clethodim	Generex
		240 g/L EC	Clethodim	Rygel
		240 g/L EC	Clethodim	WhitestarAg Product Services
		240 g/L EC	Clethodim 240	Agrismart
		240 g/L EC	Clethodim 240	AgroAlliance
		240 g/L EC	Clethodim 240	Apparent
				Biotis
		240 g/L EC	Clethodim 240	
		240 g/L EC	Clethodim 240	Genfarm
		240 g/L EC	Clethodim 240	Rainbow
		240 g/L EC	Clethodim 240 EC	4Farmers
		240 g/L EC	Clethodim 240 EC	Imtrade
		240 g/L EC	Clethodim 240 EC	Crop Smart
		240 g/L EC	Clethodim 240 EC	Ospray
		240 g/L EC	Clethodium 240 EC	Scal
		240 g/L EC	Clethodim 240 EC	Titan AG
		240 g/L EC	Coerce	Agri West
		240 g/L EC	Grasidim	Sipcam
		240 g/L EC	Havoc	Cropcare
		240 g/L EC	Innova	Syngenta
		240 g/L EC	Nissodim	Nisso BASF
		240 g/L EC	Nitro 240	Conquest
		240 g/L EC	Platinum	Farmoz
		240 g/L EC	Select herbicide	Aystra
		240 g/L EC	Select	Sumitomo Chemicals
		240 g/L EC	Sequence	Nufarm
		240 g/L EC	Status	Sumitomo
		240 g/L EC	Uproot	UPL
Dicamba	1	500 g/L AV	Cutlass 500	Farmoz
		500 g/L AV	Conquesta 500 AC	Conquest
		500 g/L AV	Dicamba 500	Accensi
		500 g/L AV	Dicamba 500	Choice
		500 g/L AV	Dicamba 500	Genfarm
		500 g/L AV	Dicamba 500	Kenso Agcare
		500 g/L AV	Dicamba 500	Ospray
		500 g/L AV 500 g/L AV	Dicamba 500	Titan AG
		500 g/L AV 500 g/L AV	Ditch 500	Agri West
			Kamba 500	Nufarm S
		500 g/L AV		
		700 g/kg WG	Cadence	Syngenta
		700 g/kg WG	Dicamba	Titan AG
Diuron	C	500 g/L SL	various for multiple products	various for multiple products
		900 g/kg DF	Diuron 900 DF	4 Farmers
		900 g/kg DF	Diuron DF	Nufarm
		900 g/kg WG	various for multiple products	various for multiple products
Fluazifop-p	А	128 g/L EC	Fusilade Forte	Syngenta
παιζπορ ρ	7 \	212 g/L EC	AC Flare	Axichem
			Flazz	
		212 g/L EC		Agriwest
		212 g/L EC	Fluazifop	4Farmers
		212 g/L EC	Fluazifop	Genfarm
		212 g/L EC	Fusilade	Syngenta
		212 g/L EC	Fuziler	Ospray
		212 g/L EC	Rootout 212	Sinon

TABLE 35: Herbi	cide trade na	ames and marketers – Regi	stered chemicals as at June :	7, 2011 (continued)
Active ingredient	Mode of Action group	Concentration and formulation	Trade name	Marketed by
Fluometuron	C	500 g/L LQ 500 g/L SC 500 g/L SL 500 g/L SL 500 g/L SL 900 g/kg WG 900 g/kg WG 900 g/L WG 900 g/L WG 900 g/L WG 900 g/L WG 900 g/L WG 900 g/L WG	Fluocam 500 Reliance Liquid Fluron 500SC Cotoran SC Fluometuron 500 SC Fluometuron 900 WG Cotoran 900 WG Fluometuron 900 WG Fluometuron 900 WG Reliance 900 WG Fluron 500SC Nu-Tron 900 DF	Spicam Crop Care Finchimica Farmoz Agroreg CMStrade Farmoz Agroreg Farmoz Crop Care Rainbow Nufarm
Fluometuron + prometryn	C	250 g/L + 250 g/L AV 250 g/L + 250 g/L SL 250 g/L + 250 g/L SL 440 g/L + 440 g/L WG 440 g/L + 440 g/L DF 440 g/L + 440 G/L WG 450 g/L + 450 g/L WG	Bandit Liquid Flupromix 500 Cotogard SC Bandit WG Convoy DF Cotogard WG Flupromix	Crop Care Sipcam Farmoz Crop Care Nufarm Farmoz Sipcam
Flumioxazin	G	500 g/kg WG	Pledge	Sumitomo Chemicals
Fluroxypyr	l	200 g/L EC 400 g/L EC	Acclaim Comet 200 Decoy 200 Flagship 200 Fluroken 200 Fluroxypyr 200 Fluroxypyr 200 Fluroxypyr 200 Fluroxypyr 200 Neon 200 Prostar Restrain Staroxy 200 Uni-Rane Starane Advanced Comet 400	Sipcam Pacific Nufarm Crop Care Farmoz Kenso Agcare Genfarm Innova Ospray Titan AG Conquest Proterra Grow Choice eChem UPL Dow AgroSciences Nufarm
Glufosinate– ammonium	N	200 g/L SL	Liberty 200	Bayer CropScience
Glyphosate	M	360 g/L AC, EC, LQ, SL 450 g/L AC, L 470 g/L AV 480 g/L AV 480 g/L AV 490 g/L AV 500 g/L AV 500 g/L EC 500 g/L SL 510 g/L AV 540 g/kg AV 570 g/ka AV 680 g/L WG 690 g/kg WG 700 g/L WG 700 g/L WG 700 g/L WG	various for multiple products various for multiple products Glyphosate 470 Ripper various for multiple products Ken-Up Gold 500 Touchdown Hitech Potassium Glyphosate 500 various for multiple products various for multiple products various for multiple products Eradicator Power Glister 680 WG Ken-up Dry Glyphosate 680 Klin-Up Panzer 680 Roundup Dry Set-up Dry 680 Suria 680 WG Wynca Roundup Ready Herbicide Agrisate 700 Clearup 700 Dri Dry-Gly 700 Dri Glyphosate	various for multiple products various for multiple products 4Farmers Dow Agrosciences various for multiple products Kenso Agcare Syngenta 4Farmers various for multiple products various for multiple products Chemag Sinon Kenso Agcare Freezone Bio tis Genfarm Nufarm Wynca Hextar Biotis Nufarm AgriEnvironmental Rygel Goobang Whitestar

TABLE 35: Herbici	ide trade na	mes and marketers - Regis	tered chemicals as at June 7	7, 2011 (continued)
Active ingredient	Mode of	Concentration and formulation	Trade name	Marketed by
	Action group			
Glyphosate	M	700 g/L WG	Glydry 700	Generex
		700 g/L WG	Glymac Dri 700	Macspred
		700 g/L WG	Glymax 700	Growchoice
		700 g/L WG	Glyphosate 700	Macphersons
		700 g/L WG	Glyphosate 700	Rainbow
		700 g/L WG	Glyphosate 700	Titan AG
		700 g/L WG	Suria 700	Hextar
		875g/L WG	Glyphosate 875	4Farmers
		840g/L WG	Glyphosate 840 DriFlo	Macphersons
		840g/L WG	ClearUp 840	Rygel
		900g/L WG	Glyphosate 900	Titan AG
Halosulfuron– methyl	В	750 g/kg DF	Nut-buster	agVantage
		750 g/kg DF	Sempra	Nufarm
		750 g/kg WG	Halosulfuron	Gullf Ag
		750 g/kg WG	Halsulfuron	Rainbow
		750 g/kg WG	Nutless	Axichem
		750 g/kg WG	Sledgehammer	Amgrow
		750 g/kg WG	Yowler	AgriWest
Haloxyfop-p		130 g/L	Judgement 130	Chemag
		520 g/L	Haloxyfop	Whitestar
		520 g/L EC	Haloxyfop 520	Chem Ag
		520 g/L EC	Haloxyfop 520	Genfarm
		520 g/L EC	Haloxyfop 520	Grow Choice
		520 g/L EC	Haloxyfop 520	Generex
		520 g/L EC	Haloxyfop 520	Imtrad
		520 g/L EC	EC Haloxyken 520	Kenso
		520 g/L EC	Harpoon	Agriwest
		520 g/L EC	Hermes	Titan AG
		520 g/L EC	Inquest	Sipcam
Haloxyfop-r	Α	130 g/L EC	Asset	Nufarm
		130 g/L	Gallant West	Dow Agrosciences
		520 g/L EC	Convict	Ospray
		520 g/L EC	Expert 520	Crop Care
		520 g/L EC	Halomac 520	Macspread
		520 g/L EC	Halox 520	Echem
		520 g/L EC	Firepower	Farmoz
		520 g/L EC	Halfback 520	Axichem
		520 g/L EC	Haloxyfop 520	4 Farmers
		520 g/L EC	Haloxyfop 520	Chemforce
		520 g/L EC	Haloxyfop 520	Cropsmart
		520 g/L EC	Haloxyfop 520	Farmalinx
		520 g/L EC	Haloxyfop 520	Ozcrop
		520 g/L EC	Haloxyfop 520	Rainbow
		520 g/L EC	Haloxyfop 520	Ruralchem
		520 g/L EC	Haloxyfop 520	Rygel
		520 g/L EC	Haloxyken 520	Kenso
		520 g/L EC	Recon 550	Conquest
	D 1:	520 g/L EC	Verdict 520	Dow AgroSciences
Imazapyr + glyphosate	B + M	150 g/L + 150 g/L AV	Arsenal Xpress	Nufarm
Metolachlor	K	720 g/L EC	Chaser	Ospray
		720 g/L EC	Clincher	Farmoz
		720 g/L EC	Bouncer	Nufarm
		720 g/L EC	Hook 720	Agronomics
		720 g/L EC	Metal 720	ChemAg
		720 g/L EC	Metachlor	Halley
		720 g/L EC	Metachlor	Rainbow
		720 g/L EC	Metachlor	Rygel
		720 g/L EC	Metoken 720	Kenso Agcare
			Motolochlar 720	4Farmers
		720 g/L EC	Metolachlor 720	461111615
		720 g/L EC 720 g/L EC	Metolachlor 720	Chem force
		720 g/L EC	Metolachlor 720	Chem force

			stered chemicals as at June	
Active ingredient	Mode of Action group	Concentration and formulation	Trade name	Marketed by
Metolachlor	K	720 g/L EC	Metolachlor 720	United FarmersCo-op
		720 g/L EC	Metor	Farmalinx
		720g/L EC	Scrimmage 720	AgriWest
		720 g/L EC	Spruka 720	Proterra
		720 g/L EC	Strada	Sipcam
		720 g/L EC	Forge	Genfarm
		960 g/L EC	Clincher Plus	Farmoz
		960g/L EC	Metor 960	Farmalinx
		960 g/L EC	Metolachlor 960	Titan AG
		960 g/L EC	Smasha 960	Agritrading
MSMA	Z	720 g/L LQ	Arena	Agricorp
IVISIVIA	۷	720 g/L SL	MSMA	Agspray
		720 g/L SL	MSMA	Barmac
		720 g/L SL	MSMA 720	Ancom
		720 g/L SL	Vesta	Campbell
		800 g/L LQ	Daconate	CropCare
		800 g/L LQ	Megalith	Agriwest
		800 g/L LQ	MSMA	ChemAg
Norflurazon	F	800 g/kg DF	Zoliar DF	Syngenta
Oxyfluorfen	G	240 g/L EC	Convert 240 EC	Ospray
,		240 g/L EC	Cavalier	Farmoz
		240 g/L EC	Encore 240	Conquest
		240 g/L EC	Goal	Dow AgroSciences
		240 g/L EC	Govern	Sipcam Pacific
		240 g/L EC 240 g/L EC	Ox 240	
				Kenso Agcare
		240 g/L EC	Oxen	Chemag
		240 g/L EC	Oxxel	Agriwest
		240 g/L EC	Oxy 240 EC	CMStrade
		240 g/L EC	Oxyfan	Farmalinx
		240 g/L EC	Oxyfluorfen	Ravensdown
		240 g/L EC	Oxyfluorfen	Ruralchem
		240 g/L EC	Oxyfluorfen	Rygel
		240 g/L EC	Oxyfluorfen 240	Agrismart
		240 g/L EC	Oxyfluorfen 240	Country
		240 g/L EC	Oxyfluorfen 240 EC	4 Farmers
		240 g/L EC	Oxyfluorfen 240 EC	Agroreg
		240 g/L EC	Oxyfluorfen 240 EC	Genfarm
		240 g/L EC	Oxyfluorfen 240 EC	Innova
		240 g/L EC	Oxyfluorfen 240 EC	OzCrop
		240 g/L EC	Oxyfluorfen 240 EC	Titan AG
		240 g/L EC	Oxyfluorfen 240 EC	United Farmers Co-op
		240 g/L EC	Point	Kendon Chemicals
		240 g/L EC	Striker	Nufarm
_		480 g/L EC	Goaltender	Dow Agrosciences
Paraquat	L	250 g/L SL	Explode 250	Conquest
		250 g/L SL	Gramoxone 250	Syngenta
		250 g/L SL	Inferno	Sipcam Pacific
		250 g/L SL	Nuquat 250	Nufarm
		250 g/L SL	Para-Ken 250	Biotis
		250 g/L SL	Paraquat 250	AgroAlliance
		250 g/L SL	Paraquat 250	Kenso Agcare
		250 g/L SL	Paraquat 250	4 Farmers
		250 g/L SL	Paraquat 250	5 Heads
		250 g/L SL	Paraquat 250	Chemag
		250 g/L SL	Paraquat 250	Chem Force
		250 g/L SL	Paraquat 250	Country
		250 g/L SL	Paraguat 250	Cropsmart
		250 g/L SL	Paraquat 250	Farmalinx
		250 g/L SL	Paraquat 250	Farmcochem
		250 g/L SL	Paraquat 250	Forward Australia
		250 g/L SL	Paraquat 250	Genfarm
		250 g/L SL	Paraquat 250	Grow Choice
		250 g/L SL	Paraquat 25	

TABLE 35: Herbic	ide trade na	nmes and marketers – Regi	stered chemicals as at June	7, 2011 (continued)
Active ingredient	Mode of Action group	Concentration and formulation	Trade name	Marketed by
Paraquat	L	250 g/L SL	Paraquat 250	Macphersons
		250 g/L SL	Paraquat 250	Ospray
		250 g/L SL	Paraquat 250	Ozcrop
		250 g/L SL	Paraquat 250	Pacific
		250 g/L SL	Paraquat 250	Proterra
		250 g/L SL	Paraquat 250	Ravensdown
		250 g/L SL	Paraquat 250	Ruralchem
		250 g/L SL	Paraquat 250	Rygel
		250 g/L SL	Paraquat 250	Sanonda
		250 g/L SL	Paraquat 250	Titan AG
		250 g/L SL	Paraguat 250	United Farmers
		250 g/L SL	Quash	Hextar
		250 g/L SL	Sinmosa	Sinon Australia
		250 g/L SL	Shirquat 250	Crop Care
		250 g/L SL	Sprayquat 250	Kendon
		250 g/L SL	Spraytop 250 SL	Farmoz
		250 g/L SL	Uniquat 250	UPL
Davagorat i al'arret	1			
Paraquat + diquat	L	135 g/L + 115 g/L AV	Alarm	Sipcam Pacific
		135 g/L + 115 g/L AV	Blowout	Agroreg
		135 g/L + 115 g/L AV	Blowout	CMS
		135 g/L + 115 g/L AV	Brown Out 250	4Farmers
		135 g/L + 115 g/L AV	Combik 250	Sinon Australia
		135 g/L + 115 g/L SL	Di–Par 250	Genfarm
		135 g/L + 115 g/L SL	EOS	Titan AG
		135 g/L + 115 g/L SL	Paradat	Farmalinx
		135 g/L + 115 g/L SL	Paradym 250	Macphersons
		135 g/L + 115 g/L SL	Paraquat/diquat	AGCP
		135 g/L + 115 g/L SL	Paraquat/diquat	Country
		135 g/L + 115 g/L SL	Paraquat/diquat	NAADCO
		135 g/L + 115 g/L SL	Paraquat/diquat	Rainbow
		135 g/L + 115 g/L SL	Paraquat/diquat	Sanonda
		135 g/L + 115 g/L SL	Premier 250	Halley
		135 g/L + 115 g/L AV	QuashDuo	Hextar
		135 g/L + 115 g/L SL	Revolver	Nufarm
		135 g/L + 115 g/L SL	Rygel Pre-Seed	Rygel
		135 g/L + 115 g/L SL	Scorcher 250	Conquest
		135 g/L + 115 g/L SL	Speedy 250	Kenso
		135 g/L + 115 g/L SL	Spray & Sow	Farmoz
		135 g/L + 115 g/L SL	Sprayout 250	Ospray
		135 g/L + 115 g/L SL	Spray.Seed 250	Syngenta
		135 g/L + 115 g/L SL	Spraykill 250	Chem Ag
		135 g/L + 115 g/L AV	Sprayplant 250	3
		135 g/L + 115 g/L SL	Tombstone	Sipcam Goobang
		5	Uni-Spray	
		135 g/L + 115 g/L SL 135 g/L + 115 g/L SL	Wildfire	United Phosphorus Limited United Farmers
D P (I P				
Pendimethalin	D	330 g/L EC	Charger 330 EC	Conquest
		330 g/L EC	Cyclone 330	Imtrade
		330 g/L EC	Fist 330	United Phosphorus
		330 g/L EC	Imethalin 330	I.Pi.C.i
		330 g/L EC	Panida Grande	Sipcam Pacific
		330 g/L EC	Pendant	Ecofertiliser
		330 g/L EC	Pendi 330	Kenso Agcare
		330 g/L EC	Pendimethalin 330	Dow Agrosciences
		330 g/L EC	Pendimethalin 330 EC	4 Farmers
		330 g/L EC	Pendimethalin 330 EC	Halley
		330 g/L EC	Pendimethalin 330 EC	Ospray
		330 g/L EC	Pendimethalin 330 EC	Rallis India
		330 g/L EC	Pendimethalin 330 EC	Titan AG
		330 q/L LC		
			Pendimethalin 330 EC	United Farmers
		330 g/L EC	Pendimethalin 330 EC Pendimethex	United Farmers Farmoz
		330 g/L EC 330 g/L EC	Pendimethex	Farmoz
		330 g/L EC 330 g/L EC 330 g/L EC	Pendimethex Rifle 330	Farmoz Nufarm
		330 g/L EC 330 g/L EC	Pendimethex	Farmoz

TABLE 35: Herbici	ide trade na	ames and marketers – Regi	stered chemicals as at Jun	e 7, 2011 (continued)
Active ingredient	Mode of Action group	Concentration and formulation	Trade name	Marketed by
Pendimethalin	D	440 g/L EC	Rifle 440	Nufarm
		440 g/L EC	Stomp 440	Crop Care
		455 g/L AV	Stomp*Xtra	Crop Care
		475 g/L	Panida Max	Rallis
Prometryn	C	500 g/L SL	Gesagard 500 SC	Syngenta
		500 g/L SL	Promesip 500	Sipcam
		500 g/L SL	Prometrex 500 SC	Farmoz
		500 g/L SL	Prometryn 500	Agroreg
		500 g/L SL	Prometryn 500	Country
		500 g/L SL 900 g/kg DF	Prometryn 500 Prometryn 500	Ospray
		900 g/kg DF 900 g/kg WG	Prometryn 500 SC	Ozcrop CMStrade
		900 g/kg WG	Prometryn 900 DF	Nufarm
		900 g/kg WG	Gesagard 900 WG	Syngenta
		900 g/kg WG	Prometrex 900 WG	Farmoz
		900 g/kg WG	Prometryn 900	Agroreg
		900 g/kg WG	Prometryn 900	CMStrade
			Prometryn 900	Ozcrop
			Proton 900 WG	Crop Care
Propaquizafop	А	100 g/L EC	Correct 100 EC	Bayer CropScience
			Shogun	Farmoz
Pyrithiobac sodium	В	850 g/kg SP	Staple	DuPont
Sethoxydim	A	186 g/L EC	Sertin 186 EC	Bayer CropScience
s-Metolachlor	K	960 g/L EC	Dual Gold	Syngenta
Triclopyr	1	600 g/L EC	Garlon 600	Dow AgroSciences
Псюруг	1	600 g/L EC	Grando 600	Crop Care
		600 g/L EC	Hurricane 600	ChemAg
		600 g/L EC	Invader 600	Nufarm
		600 g/L EC	Maca 600	Conquest
		600 g/L EC	Melon 600	Agronomics
		600 g/L E C	Pyrmac	Macspread
		600 g/L EC	Ranger 600	Hextar
		600 g/L EC	Redeem 600	Sipcam
		600 g/L EC	Safari 600	Farmoz
		600 g/L EC	Triclon 600	Grow Choice
		600 g/L EC	Tryclops 600	Weedpro
		600 g/L EC	Triclopyr 600	4Farmers
		600 g/L EC	Triclopyr 600	Agroreg
		600 g/L EC	Triclopyr 600	Agrismart
		600 g/L EC	Triclopyr 600	AgriWest
		600 g/L EC 600 g/L EC	Triclopyr 600 Triclopyr 600	Chemforce CMs
		600 g/L EC	Triclopyr 600	Crop Smart
		600 g/L EC	Triclopyr 600	Generex
		600 g/L EC	Triclopyr 600	Halley I
		600 g/L EC	Triclopyr 600	Innova
		600 g/L EC	Triclopyr 600	Kenso Agcare
		600 g/L EC	Triclopyr 600	Ospray
		600 g/L EC	Triclopyr 600	Ozcrop
		600 g/L EC	Triclopyr 600	Superway
		600 g/L EC	Triclopyr 600	Titan AG
		600 g/L EC	Triclopyr 600	United Farmers
		600 g/L EC	Tripyr	Farmalinx
			Trident 600	Genfarm
Trifloxysulfuron sodium	В	750 g/kg WG	Envoke	Syngenta
Trifluralin	D	480 g/L EC	Treflan 480	Crop Care
		480 g/L EC	various for multiple products	various for multiple products
		500 g/L EC	Trilogy Xtra	Farmoz
		500 g/L WP	Credit Selective	Nufarm
		500 g/L EC	Triflur xcel	Nufarm
		530 g/L EC	Trifluralin 530	Country
		600 g/L EC	Treflan 600	Dow Agrosciences
		600 g/L EC	Triflur 600	Nufarm

Volunteer and ratoon cotton

Frank Taylor, Nufarm Susan Maas, DEEDI Qld

The control of unwanted cotton in the farming system is an essential part of good integrated pest and disease management. Unwanted cotton is generally described as either

Volunteer cotton – plants that have germinated, emerged and established unintentionally and can be in field or external to the field (roadsides, fence lines etc).

'Ratoon' cotton – Also known as 'stub' cotton, ratoon is cotton that has regrown from left over root stock from a previous season.

Control of volunteers

Cultivation and herbicides are the two most common methods of volunteer cotton control. Both require the cotton plants to have germinated and emerged before control can occur. Planning to control volunteers is a key part of an integrated weed management strategy and should consider issues such as rotational crops, and other weeds present in the field. Reducing the amount of viable seed left in fields (through clean pick, stubble management) and around farm (through clean up after module removal and spillages) will reduce the amount of volunteers that germinate. It is also important to remember that volunteers and ratoons that are left to set seed will also contribute to volunteers.

Cultural

• Broadacre cultivation will control seedling volunteers as well

Reasons why ratoon and volunteer cotton must go

- 1. Mealybugs survive from one season to the next on these food sources, infesting crops earlier in the following season.
- 2. Cotton aphids with resistance to neonicotinoids survive between seasons on these plants, reducing insecticide effectiveness.
- 3. Bunchy top disease can be transmitted by cotton aphids from infected rations to new cotton crops.
- Silverleaf whitefly survive between seasons on these plants, resulting in earlier infestation in the following season.
- 5. They provide a winter host for pale cotton stainers and solenopsis mealybugs.
- 6. Inoculum of soil-borne diseases such as black root rot, Fusarium and Verticillium builds up in ratoons.
- 7. Ratoon plants place extra selection pressure on Bt
- 8. Ratoon cotton can be used as a host by the earliest and latest Helicoverpa generations.
- 9. Ratoon plants may only express sub-lethal doses of the Bt proteins, therefore increasing resistance selection pressure.
- 10. Fields with ratoons from Bt cotton are unsuitable for planting refuge crops, as the refuges cannot be effective if contaminated with Bt cotton plants.
- 11. Removing rations may be a costly exercise, but it is cheaper than the costs of dealing with the problems resulting from not removing them
- 12. They are a biosecurity risk. Ratoons harbour pests and are a potential point of establishment for exotic pests.

as large volunteers in a fallow situation. Effective cultivation will only occur if the cultivation implement cultivates both the furrow and hill avoiding strips being left uncultivated. Cultivation will also manage other weeds besides seedling volunteer cotton which makes it an excellent non-chemical control to include within a integrated weed management program. The disadvantage of cultivation is that it only controls established seedlings, is slow and can cause moisture loss or soil damage if conducted at the wrong time.

- Seedling volunteers can be controlled reasonably well with less invasive physical removal such as kelly chains. These break the seedling cotton stems and can be particularly useful close to planting.
- Where isolated plants remain during a fallow and in nonfield areas, spot spraying and physical removal by chipping is extremely effective.
- In crop cultivation with sweeps that lift or till out volunteers and other weeds are effective tools for control when volunteers are small.

Chemical

- The broad spectrum herbicide glyphosate has often been used extensively to control seedling volunteer cotton. Control has either been deliberate or inadvertent when targeting other weeds prior to cotton planting as a fallow spray or within crop as a shielded spray. Glyphosate rates of 1.2 L/ha (450 g/L.) will easily control seedling cotton at the 1st and 2nd true leaf stage.
- The release and widespread adoption of Roundup Ready Flex* cotton, which has a gene allowing the tolerance of over-the-top applications of glyphosate, eliminates the use of glyphosate as a potential control herbicide for seedling volunteer Roundup Ready Flex* cotton. Likewise Liberty Link* volunteer seedlings cannot be readily controlled with glufosinate.
- With all contact herbicides, excellent spray coverage is essential for adequate control. This often means high (e.g. 100L/ha) water volumes per hectare. Coverage can often be compromised due to shading, stubble & lint. Ensure appropriate spray quality which may vary depending on the product selected, but generally a medium-coarse spray quality would be adequate at 100L/ha (see nozzle selection information pxx)
- Rotation cropping enables residuals to be included in the mix and is a good cultural control. Where rotations are planned, ensure that good control is achieved as cotton plants hidden within subsequent crops can continue to harbour pests and disease and won't be as obvious as bare fallows.
- Most herbicide options work best on seedling volunteers.
 Where plants become well established control is much more difficult. Double knock technique may be useful for these plants.
- Ensure label directions are followed, especially where volunteers are located near water ways.

Ratoon cotton

In theory ratoon cotton should not occur due to the requirement of harvested cotton to be controlled with adequate

Volunteer and ratoon cotton

cultivation and soil disturbance as soon as practical after picking. This usually involves some sort of mulching and/or root cutting followed by cultivation to destroy the cotton root system. In conducting this cultivation an additional aim is to destroy over-wintering Helicoverpa pupae. This pupae control is a frontline strategy in managing insecticide resistance for the cotton industry and is mandatory if growing Bollgard II* cotton Thorough crop destruction can be particularly challenging in a zero till situation, where the only soil disturbance is pupae busting. This operation should be conducted carefully to minimize the number of ratoons that survive.

Ratoon cotton is extremely difficult to control with herbicides as there is a small leaf area for herbicide absorption compared to the large root system available for carbon and nutrient supply. Table 3 in WEEDpak section F4.4 shows that for selected herbicides on ratoon cotton 20 days after treatment. there was greater than 90% regrowth on all treatments. Table 36 provides a list of herbicides that have registration for control of volunteer cotton. Not all brands of these actives have volunteer cotton on the label. Refer to label for specific use information.

ALWAYS FOLLOW LABEL DIRECTIONS

Actives	MOA	Conc & forumulation	Appl rate	Stage	Comment
Amitrole + Ammonium Thiocyanate	Q	250 g/L + 220 g/L SL	4.3-5.6L/ha	Cotyledon – 8 leaf	See label for rain fastness. Apply in 50–100L/ha water. Addition of 0.25% LI700 may improve results. Tank mix with glyphosate. Sowing can occur immediately after application. Bleaching of isolated crop leaves may be seen after emergence
Amitrole + Paraquat	Q+L	250 g/L + 125 g/L SC	2-4 L/ha	Up to 8 leaf	Can be applied after an initial spray of a glyphosate herbicide (Double Knockdown). Refer to label for spot spray rates.
Bromoxynil	С	200 g/L EC	1.5L/ha or 1–1.5L/ha with glyphosate	Cotyledon – 6 leaves	Apply in minimum of 80L/ha water for Roundup Ready cotton. See label for rain fastness. Refer to label for restrictions on spray quality & condition.
Carfentrazone- Ethyl	G	400 g/L EC	Roundup Ready: 0.045 – 0.060 L/ha plus adjuvant Conventional 0.030 – 0.045 L/ha	2-6 leaf	Apply minimum spray volume of 80 L/ha. Tank mix with glyphosate, or products containing paraquat. Refer to label for adjuvant recommendation
	G	240 g/L EC	Roundup Ready: 0.075–0.1 L/ha plus adjuvant Conventional 0.050–0.075 L/ha	_	
Paraquat + Diquat	L	135 g/L + 115 g/L SL	1.6 – 2.4 L/ha SL 2.4 – 3.2 L/ha	1 – 4 leaf 5 – 9 leaf	Apply in 50–100L water/ha. For best results, spray during humid conditions in the late evening.
Flumetsulam	В	800 g/kg WG	50 g/ha	Pre-emergent	Do not apply post-emergent treatments if rain is likely within 4 hours. Do not irrigate (any method) treated crop of pasture for 48 hours after application. May be banded (>40%) over the row or broadcast. Minimum spray volume 150L/ha for optimum results.
Flumioxazin	G	500 g/kg WG	45 g/ha plus adjuvant	up to 4 leaf	Do not apply post-sowing pre-emergent. Apply up to 24 hours prior to sowing. Can be tank mixed with glyphosate. Refer to label for adjuvant details.
Glufosinate- Ammonium	N	200 g/L SL	3.75 L/ha in 100L water	2.6 leaf	Only apply to Liberty Link cotton varieties. Max 2.25kg a.i./ ha/season (3 applications). As a contact herbicide coverage is critical to effectiveness.
Metribuzin	С	750 g/kg WG	470 g/ha	Pre-emergent	Registered for control of volunteer cotton in pigeon pea. Refer to label for critical comments.
		480 g/L SC	0.750 L/ha	Pre-emergent	Registered for control of volunteer cotton in pigeon pea. Refer to label for critical comments.

Integrated disease management

Stephen Allen, Cotton Seed Distributors **Linda Smith, Linda Scheikowski, Cherie Gambley, Murray Sharman and Susan Maas**, DEEDI Qld

Introduction

A plant disease occurs when there is an interaction between a plant host, a pathogen and the environment. When a virulent pathogen is dispersed onto a susceptible host and the environmental conditions are suitable then a plant disease develops and symptoms become evident.

Disease control strategies must therefore focus on the host, the pathogen and/or the environment. 'Integrated Disease Management' involves the selection and application of a harmonious range of control strategies that minimise losses and maximises returns. Each of the disease control strategies by itself is not able to provide adequate control. However, when several such strategies are used in combination then acceptable control is achieved.

Effective disease management must be integrated with management of the whole farm. The absence of symptoms does not indicate an absence of disease. Basic strategies should be implemented regardless of whether or not a significant disease problem is evident. These basic strategies should focus on the host, the pathogen and the environment.

The host

A particular plant may be immune, resistant or susceptible. Breeders also use the term 'tolerance' to imply good performance (yield) despite the presence of the disease. Examples of disease control strategies that focus on the host include:

The use of resistant varieties

Australian upland cotton varieties are completely resistant to Bacterial blight. Some have good resistance to Verticillium wilt and some have some resistance to Fusarium wilt. Use varieties with good seedling vigour.

When the Black root rot pathogen is present, use the more indeterminate varieties that have the capacity to catch up later in the season. Avoid growing susceptible varieties in fields that contain infected residues.

Balanced crop nutrition

A healthy crop is more able to express its natural resistance to disease. Adopt a balanced approach to crop nutrition, especially with nitrogen and potassium. Both deficiencies and excesses provide better conditions for the development of diseases such as Verticillium and Alternaria. For more information on cotton nutrition see NUTRIpak available from the Cotton CRC.

Replanting

Replanting decisions should be made on the basis of stand losses, not on the size of the seedlings.

The pathogen

A pathogen must be present in the area, capable of surviving the inter-crop period and adapted for effective dispersal between host plants if a disease is to occur. Disease control strategies that focus on the pathogen include:

Monitoring

Be aware of what diseases are present, where they are present and whether or not the incidence is increasing. Do your own disease survey in November and February of each season. Train farm staff to be observant and report back on possible disease occurrences.

Practice good farm hygiene

Minimise the movement of pathogens onto and off your farm, and between fields within your farm. Clean down machinery and vehicles of mud, crop and weed residues between fields and farms. Minimise movement of crop residues in tailwater recirculation systems. Encourage all visitors to 'COME CLEAN' and 'GO CLEAN'. For more information refer to myBMP.

Use rotation crops that are not hosts

Develop a sound crop rotation strategy. Successive crops of cotton can contribute to a rapid increase in disease incidence – especially if susceptible varieties are used. Use rotation crops that are not hosts for the pathogens present. The Verticillium wilt pathogen has a large host range and most legume crops are hosts of the Black root rot pathogen.

Control alternative hosts and volunteers

The pathogens that cause Verticillium wilt, Fusarium wilt, Black root rot, Tobacco Streak Virus and Alternaria leaf spot can also infect common weeds found in cotton growing areas. Control alternative hosts to prevent build up of inoculum and carry over of disease from one season to the next.

Cotton volunteers and cotton ratoons can significantly increase the risk of disease carry over between seasons. Ensure weed management strategies for fallows and rotation crops consider the need for volunteer control, particularly in systems where herbicide tolerant crops are grown. Manage cotton stubble to avoid the occurrence of ratoon cotton as herbicides are rarely cost effective or highly efficacious.

Crop residues

Manage crop residues to minimise carryover of pathogens into subsequent crops. The pathogens that cause Verticillium wilt, Fusarium wilt, Black root rot, boll rots, seedling disease and Alternaria leaf spot can all survive in association with crop residues. Incorporate cotton crop residues as soon as possible after harvest, except where Fusarium wilt is present. Where

Fusarium is present residues should be slashed and retained on the surface for at least one month prior to incorporation. The Fusarium wilt pathogen can also survive and multiply on the residues of non-host crops such as cereals. Currently recommendations are that residues should be buried or baled as soon as possible after harvest.

Application of fungicides

Examples include seed treatments for seedling disease control and foliar sprays for the control of Alternaria leaf spot on Pima cotton. For more details see Tables 37 and 38 on page 132.

Biofumigation

In addition to fixing substantial quantities of nitrogen, vetch has a biofumigation effect against Black root rot. As the vetch breaks down in the soil, ammonia is released in sufficient quantities to kill spores of the Black root rot pathogen. In contrast, vetch residues can increase the activity of Fusarium wilt in the following cotton crop.

The success of biofumigation depends on the growth of the biofumigant crop and good incorporation (at least 4 weeks before planting). Biofumigant crops can been grown and incorporated a year before planting the following cotton crop.

Control of insect vectors

Diseases caused by a virus or phytoplasma can often be prevented by controlling the vector that carries the pathogen. Cotton Bunchy Top (CBT) can be transmitted by aphids feeding on infected plants then migrating to healthy plants. Transmission of Tobacco Streak Virus (TSV) to plants relies on the virus from infected pollen entering plant cells through the feeding injury caused by thrips. Many species of thrips are potentially capable of transmitting TSV. For more information on these diseases, see the following section. Aphid and thrip thresholds can be found on pages 14 and 30.

The environment

Pathogens have optimum temperature, relative humidity, leaf wetness and/or soil moisture content requirements for infection to occur and for the disease to spread and multiply in the host plant. When environmental conditions are not optimal then the rate of disease development is reduced.

It may appear difficult to manipulate the environment but it can

be achieved by altering row or plant spacing, irrigation method or frequency or by changing the sowing date. Possible disease control strategies that focus on the environment include:

Good bed preparation

Plant into well prepared, firm, high beds to optimise stand establishment and seedling vigour. Carefully position fertiliser and herbicides in the bed to prevent damage to the roots. Fields should have good drainage and not allow water to back-up and inundate plants.

Irrigation scheduling

Applying water prior to planting provides better conditions for seedling emergence than watering after planting.

Watch for signs of water stress early in the season if the root system has been weakened by disease (eg. Black root rot) and irrigate accordingly. Avoid waterlogging at all times, but especially late in the season when temperatures have cooled. Irrigations late in the season can result in a higher incidence of Verticillium wilt.

Agronomic management

High planting rates can compensate for seedling mortality however a dense canopy favours development of bacterial blight, Alternaria leaf spot and boll rots. Avoid rank growth and a dense canopy with the use of growth regulators. Manage irrigations, nutrition and insects for early maturity as many pathogens are favoured by cool conditions at the end of the season.

In fields where Fusarium wilt is present avoid inter row cultivations after seedling stage as mechanical damage to the roots provide a site for infection by the pathogen.

Sowing date

Delay sowing as late as possible within the planting window to avoid cool, wet conditions that favour disease. Sowing when the soil temperature is above 20°C would be best for reducing cotton's susceptibility to disease, but generally this is not practical. Time planting to coincide with soil temperatures of at least 16°C and rising.

Soil health

Fields where soil borne pathogens cause chronic disease in cotton are not 'unhealthy' as healthy cereal crops could be grown in the same field. These diseases are not present because the soil has been mistreated, the presence of the pathogen creates a problem with the health of the plants but not a problem with the health of the soil.

WHAT WILT IS THAT? IT'S FREE TO FIND OUT!

CRDC fund identification of pathogens in cotton

Contact Linda Smith, DEEDI Qld, Telephone 07 32554356 Email linda.smith@deedi.qld.gov.au

Common diseases of cotton

Stephen Allen, Cotton Seed Distributors **Linda Smith, Linda Scheikowski, Cherie Gambley, Murray Sharman and Susan Maas,** DEEDI Qld

Seedling diseases

There have been over 30 species of fungi isolated from dying cotton seedlings. Death of seedlings is often referred to as 'damping off' but is mainly caused by

Rhizoctonia solani

Pythium spp.

Fusarium spp. (not Fusarium wilt)

Symptoms

Pre-emergent seed rots. Post emergent wilting, collapse and death (damping off). Slow early season growth, small cotyledons and reddened hypocotyls, lesions on roots. Favoured by

Anything that slows down germination and seedling growth favours infection by seedling disease. This includes cool and/ or wet weather, poorly formed beds, compaction, waterlogging, incorrect planting depth, fertiliser under the plant line, excessive rates of planting herbicide, movement of herbicide into root zone (ie by rain) and infection by other pathogens.

Host range

These pathogens have wide host ranges and can survive on residues of many crops and weeds.

IDM tactics

- Use a variety with good seedling vigour.
- Use effective seed treatment fungicides.
- Avoid freshly incorporated rotation crop residues.
- Plant into well prepared, high, firm beds.
- Carefully position fertiliser away from the plant line.
- Plant into moisture.
- Delay planting until temperatures are optimum.
- Take care with use of herbicides at planting.

Black root rot

Thielaviopsis basicola

Symptoms

Affected crops appear to be slow growing or stunted, especially during the early part of the season. The disease causes destruction of the root cortex (outer layer), seen as blackening of the roots. Some roots may die but T. basicola does not kill seedlings by itself. Severe black root rot opens the root up for infection by Pythium or Rhizoctonia. Plants that are badly affected early in the season may not continue to show symptoms later in the season as the dead cells of the root cortex are sloughed off when growth resumes in warmer weather.

Host range

The host range of T. basicola includes all varieties of cotton, most legumes including faba bean, soybean, cowpea, field pea, chickpea, mung bean, lablab and lucerne. Datura weeds (thornapple, caster oil) are also hosts, but little is known about other weeds.

Non hosts include all the cereal crops, sunflower, canola and vetch.

IDM tactics

- Choose varieties that can 'catch up'.
- Use Bion seed treatment.
- Prepare beds well ('high and firm' not 'low and loose')!
- Pre-irrigate and/or plant into moisture.
- Delay planting if possible.
- Rotate with non-hosts for up to 3 years.
- Avoid legumes and control weeds.
- Effective biofumigation with vetch or mustard,
- Minimize your tailwater.
- Always practice good farm hygiene.
- Summer flooding if possible.

Black root rot. (Stephen Allen, CSD)

Common diseases DISEASES

Verticillium wilt

Verticillium dahliae

Symptoms

Leaf mottle – yellowing between the veins and around the leaf margins, vascular discolouration or browning extending throughout the stem and into the petioles, root system otherwise healthy, some defoliation may occur if cool. Internal symptoms can be checked by cutting the stem. The vascular tissue of an infected plant will reveal flecking brown discolouration extending throughout the stem and into the petioles. Under Australian conditions with Australian strains of the pathogen, all plants with vascular symptoms will also display foliar symptoms,

The discolouration is similar to that of Fusarium wilt but usually appears as flecking rather than continuous browning. Severe cases often need to be tested by a pathologist to determine whether the pathogen is Fusarium or Verticillium. The root system appears otherwise healthy.

Favoured by

Resistance to the disease is temperature sensitive. Varieties that are resistant at 25°–27°C are susceptible at 20°–22°C. The disease is most severe during extended wet weather and/or waterlogging and in late maturing crops. The disease is favoured by excessive use of nitrogen which results in late season growth and also by potassium deficiency.

Host range

Verticillium wilt has a large host range which includes sunflower, soybean, noogoora and bathurst burr, saffron thistle, thornapple, caustic weed, bladder ketmia, burr medic, black bindweed, pigweed, devils claw, turnip weed, mintweed, blackberry nightshade and others.

Non host crops include sorghum and cereals.

IDM tactics

- Choose varieties with V.ranks over 100.
- Manage for earliness.
- Avoid late season irrigations.
- Incorporate cotton residues soon after harvest.
- Rotate with non-hosts such as cereals or sorghum.
- Control alternative weed hosts.
- Minimize your tailwater.
- Always practice good farm hygiene.

Fusarium wilt

Fusarium oxysporum var. vasinfectum (FOV)

Symptoms

External symptoms include stunted growth and dull and wilted leaves followed by yellowing or browning of the leaves and eventual death from the top of the plant. Some affected plants may reshoot from the base of the stem. External symptoms can appear in the crop at any stage. Most commonly they become apparent in the seedling phase when plants are beginning to develop true leaves, or after flowering during boll fill. Symptoms can appear as only a few, individual plants or as a small patch, often but not always in the tail drain or low-lying areas of the field.

Internal symptoms can be checked by cutting the stem. An affected plant will reveal continuous brown discolouration of the stem tissues running from the main root up into the stem. The discolouration is similar to that of Verticillium wilt but usually appears as continuous browning rather than flecking.

Favoured by

Use of susceptible varieties. Stresses in the crop such as waterlogging, root damage through cultivation and cool, wet growing conditions. Spores surviving in soil and on crop residues can be spread by overland flows, in irrigation water and attached to people and machinery.

Host range

The FOV pathogen is specific to cotton but can live of the residues of most non host crops. Known alternative weed hosts include bladder ketmia, sesbania pea and dwarf amaranth, however there are possibly more.

IDM tactics

- Plant a high F.rank variety with Bion seed treatment.
- Delay planting to the end of October.
- Avoid cultivating with knives.
- Retain cotton residues on the surface for 60 days.
- Bare fallow rotation is best.
- If using a cereal rotation then bury, bale or burn cereal residues ASAP.
- Minimise your tailwater.
- Always practice good farm hygiene.
- Summer flooding if possible.

Fusarium wilt. (Linda Smith, DEEDI Qld)

DISEASES Common diseases

Alternaria leaf spot

Alternaria macrospora Alternaria alternata

Most commercial varieties of cotton are relatively resistant to Alternaria and the impact of the disease on yield is insignificant, unless the crop is severely affected with premature senescence associated with potassium deficiency. Pima cotton is very susceptible.

Symptoms - A. macrospora

Brown, grey brown or tan lesions 3–10 mm in diameter on lower leaves, sometimes with dark or purple margins. Circular dry brown lesions on bolls.

Pima varieties can defoliate rapidly when the environment favours the disease.

Symptoms – A. alternata

Purple specks or small lesions with purple margins on bolls and leaves.

Favoured by

Heavy dews or extended periods of wet weather resulting in long periods of free moisture on the leaf. Suppressed by hot dry weather. Nutritional stress can favour development. Pima varieties are quite susceptible.

Host range

Cotton, bladder ketmia, sida and anoda weed.

Boll rot

Phytophthora boll rot is the most common, while Sclerotinia boll rot and Fusarium boll rot (not Fusarium wilt) are usually only seen in very rank crops.

Phytophthora boll rot

Phytophthora nicotianae var. parasitica

Symptoms

Infected bolls quickly turn brown and become blackened before opening prematurely. Symptoms most prevalent on the lower bolls

Favoured by

Heavy rainfall on exposed soil that splashes soil up onto low bolls enables infection. Low mature bolls and lodged plants are at highest risk of infection.

Host range

Safflower, some horticultural and many ornamental plants.

Tobacco streak virus

Tobacco streak virus (TSV)

Symptoms

Symptoms included dark purple or necrotic, spreading lesions on leaves, sometimes forming numerous diffuse ring spots. On plants with numerous necrotic lesions the upper leaves sometimes also display chlorotic mottle and deformed, downcurled leaves. Symptoms in young cotton crops are generally mild and consist of single, diffuse necrotic lesions on one leaf of infected plants.

Favoured by

TSV disease is favoured by climatic conditions which enable high thrips populations to develop, and large amounts of infective pollen to be produced by host plants such as parthenium. These conditions generally occur during warmer months and is highly dependant on rainfall and weed growth patterns.

Host range

Cotton, sunflower, mung beans, chickpeas, soybean and peanuts. Weed hosts include parthenium, native jute, native rosella, milk weed, thornapple, ground cherry, rattle pods, crownbeard and Noogoora burr.

Tobacco streak virus. (Murray Sharman, DEEDI Qld)

Cotton bunchy top (CBT)

CBT is viral disease that is relatively new to Australian cotton being first observed in the 1998/99 season. The disease has since been reported from the Macquarie Valley in the south to the Emerald region in the north. CBT is spread by the cotton aphid (*Aphis gossypii*, Glover).

Symptoms

Symptoms include; reduced plant height, leaf size, petiole length, internode length and boll size. Leaf symptoms are usually an angular pattern of pale green margins and darker green centres. These darker leaves have a leathery and sometimes glossy texture when compared to leaves on healthy plants. Typically, the pale angular patches turn red as leaves age. Bolls are often less than half the size of healthy bolls. Symptoms are also evident on roots. These include the formation of small knots on the secondary root branches. The roots also appear

Common diseases DISEASES

hairy and dark brown in comparison to the light yellow-brown colour of healthy roots.

Usually a period of 3–8 weeks lapses between when the infection occurs and when symptoms are first observed. The severity of symptoms expressed by infected plants depends on their age at the time of infection. After the plant is infected, new growth is also characterised by small leaves, short internodes and small bolls. This is usually limited to growth that occurs after infection; growth before this stage may appear normal. When plants become infected very early, as seedlings, the growth of the whole plant is affected and the crop takes on a compact, stunted, 'climbing ivy' appearance.

Infections early in the season have the greatest potential to reduce yield. However the extent to which yield is affected also depends on the proportion of plants infected. If the proportion is low, then uninfected neighbouring plants will often compensate and make up any yield loss. If the proportion infected is high (>50%), yield may be reduced.

Plants showing symptoms of the disease are often found in circular patches in association with prolonged aphid activity. These are most likely to occur;

- On field margins, where aphids carrying the disease have moved from other hosts into the cotton crop; or
- In portions of the field where there has been survival of CBT-affected cotton rations from the previous season.

Favoured by

Fields at highest risk of CBT are those in close proximity to ratoon cotton. When cotton plants are infected with CBT late in the season, there may not be sufficient time for symptoms to be expressed. Ratoons act as both a preferred host for the aphids and a reservoir for the disease, creating a source of infection in the new season.

Disease spread is favoured by climatic conditions which are suitable for aphid reproduction, feeding and spread. The risk from CBT is probably higher after wetter winters and lower after dry winters. The presence of weed hosts allow larger aphid populations to overwinter, increasing the likelihood of aphids moving into cotton early in the season when there is sufficient time for infection to result in the development of severe symptoms.

Even when there is a source of CBT in close proximity to a cotton field, the spread of the disease is also highly dependent on the size and movement of the aphid population. CBT is more easily transmitted when plants are colonised by many infected aphids. If just one CBT-infected aphid colonizes a plant, the transmission rate is $\sim 5\%$ (1 in 20 plants become infected). If there are three or more infected aphids the transmission rate increases to $\sim 40\%$. The CBT virus must multiply within an infected plant to a sufficient level before the

aphids are able to acquire & spread further. Aphids feeding on the plant in this lag period, will not acquire the disease, & if they move to adjacent plants will not spread it. After this lag period aphids moving to adjacent plants will spread the disease

Host range

The most critical alternative host plant is ratoon volunteer cotton. Ratoon plants are often large, with a deep tap root. They are able to survive through periods of low rainfall and often retain leaves and active growth through winter, supporting infected aphid populations from one season to the next. Pima cotton (*Gossypium barbadense*) is a symptomless host. Symptoms in these p[lants can be difficult to identify. Aphids that feed on infected plants can become infected and transfer CBT to upland cotton (*G. hirsutum*) which will then express disease symptoms.

The cotton aphid has a broad host range, including many weeds common in cotton growing areas. At this stage only marshmallow has been confirmed to be an alternative host for CBT. However it is possible that other weeds are also hosts. Weed hosts may not express disease symptoms, similarly to pima cotton. For a comprehensive list of the cotton aphid's alternative hosts, refer to the Cotton CRC Information Sheet 'Managing Aphids in Cotton', on the Cotton CRC website.

IDM tactics

1. Avoid the problem

- Elimination of hosts, particularly over winter, is the most effective means of minimising the risk of CBT. Break the green bridge and step 2 will not be required.
- CBT can only survive in living plants. If there is a break in the presence of host between cotton seasons, this will reduce the risk of CBT surviving on-farm through winter. Cotton volunteers, regrowth and ratoons are an important host of CBT. Good crop destruction and control of ratoons and volunteers is critical for controlling CBT. This also removes an important over winter host for cotton aphid. Growers should also control volunteer cotton plants on their farms, especially near sheds, head ditches, water ways, riparian areas and roads.
- Good on-farm management of broad leaf weeds is important as they can also host aphids and some may be hosts for CBT.
- Controlling volunteers or ratoons may force winged aphids to move to nearby cotton crops and spread CBT. To reduce this risk control volunteers/ ratoons before cotton emerges.

2. Manage the risk

- Aphid control should not be the primary means of preventing infection.
- Don't over-react to aphids. Excessive use of aphicides will select resistance and restrict control options.
- Sample young cotton regularly for aphids and assess aphid spread within the field (while they are wingless spread will be slow, faster once winged forms present).
- If aphid populations are unhealthy (many beneficials present, high mortality and little spread) then keep monitoring, if healthy then consider control with a selective option so that beneficials can provide ongoing mortality.
- If a high influx of aphids is experienced consider controlling them quickly with a selective option to reduce the risk of CBT infection.
- Maintain the beneficial complex to help control aphids.

Cotton Pathology Survey 2010–11

SJ Allen¹, KA Kirkby², J Lehane³, PA Lonergan², BR Cooper² and LJ Smith⁴, Cotton Catchment Communities CRC

Commercial cotton crops across NSW and Queensland were inspected in November-December 2010 and February-April 2011. The incidence and severity of those diseases present were assessed and field history, ground preparation, cotton variety, planting date and seed rate were recorded for each of the 89 and 56 fields that were surveyed in NSW and Queensland respectively. This represents the 28th consecutive season of quantitative disease surveys of cotton in NSW and the 9th consecutive season of cotton disease surveys in Queensland. The 2010/2011 season generally featured a wet spring, significant flooding in summer and a dry autumn. Consequently, planting was delayed and crop development was slow culminating in a late harvest. The combination of a wet spring and record prices also contributed to a late planting frenzy. These conditions impacted significantly on the incidence and severity of cotton diseases and on the timing of disease surveys (Table A). The devastating flooding in the Dawson River completely destroyed cotton growing near Theodore and Moura and late season surveys in this area were not possible.

Cotton industry biosecurity plan – crop surveillance for priority pests

During these surveys particular attention was given to the detection of Cotton Leaf Curl Virus, Blue disease, Phymatotrichopsis root rot, the hypervirulent strains of the bacterial blight pathogen, the defoliating strains of the Verticillium wilt pathogen and exotic strains of the Fusarium wilt pathogen. None of these diseases and/or pathogens were observed.

Volunteer cotton—carry-over from the previous season

Information on the occurrence of volunteer cotton was collected during the annual disease surveys and is based on visits to 42 farms in NSW and 18 farms in Queensland during November and December of 2010 (Table B). The number of

1 Cotton Seed Distributors Ltd., PO Box 17, Wee Waa NSW
2 NSW Department of Primary Industries, Locked Bag 1000, Narrabri NSW
3 Agri-Science Queensland, DEEDI, 203 Tor Street, Toowoomba, Qld
4 Agri-Science Queensland, DEEDI Ecoscience Precinct, GPO Box 46,
Brisbane. Old

farms with (1) mature cotton plants surviving along roadsides, fence lines, along channels and in tail water return systems or drains, (2) volunteer cotton in fallow or rotation fields and (3) mature cotton plants surviving from the previous season or regrowth from stubs (Ratoon cotton?) in current cotton crops, were recorded.

TABLE B: The occurrence of volunteer cotton plants surviving from the previous season on farms in NSW and Queensland in the spring of 2010

	1. Along channels, roads, fences	2. In fallows and rotation crops	3. In the current crop (regrowth from stubs)	TOTAL
In NSW	25/42 (60%)	9/42 (21%)	23/42 (55%)	34/42 (81%)
In Qld	7/18 (39%)	1/18 (6%)	5/18 (28%)	10/18 (56%)
Total	32/60 (53%)	10/60 (17%)	28/60 (47%)	44/60 (73%)

The presence of volunteer plants surviving over from the previous season enables pests and pathogens such as aphids and mealy bug and cotton bunchy top to overwinter and initiate new outbreaks in the spring. Wet weather during September 2010 allowed vigorous growth of volunteer cotton in noncropped areas. Volunteer cotton plants were observed on 44 of the 60 farms visited during the disease surveys (73%).

Seedling mortality

As part of the disease survey an estimate of the number of seeds planted per metre is compared to the number of plants established per metre. This comparison produces an estimate of seedling mortality which includes the impact of seedling disease (Rhizoctonia and Pythium etc.) as well as seed viability, the activity of soil insects such as wireworms, physical problems such as fertiliser or herbicide burn and the effects of adverse environmental conditions.

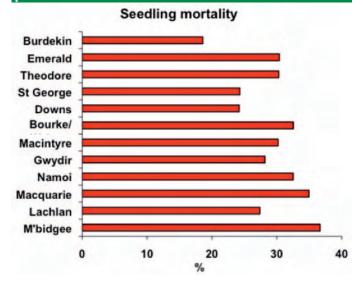
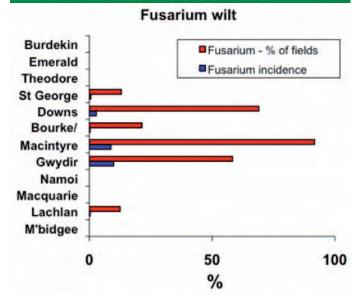

Mean seedling mortality (Figure 1) for the crops inspected in NSW and Queensland was 31.9% and 25.8%, respectively, (32.5% and 25.8% in 2009–10; 28.8% and 24.9% in 2008–09; 31% and 19.5% in 2007–08). Many growers were able to establish the crop on rainfall with no need to pre-irrigate. Problems with crop establishment were noted in some areas. These problems included a cold spell in mid-October and the necessity of a quick turnaround between the rain-delayed harvest of a winter crop and the planting of cotton in the same

TABLE A: The number of fiel	ds surveyed and the tir	ming of surveys for 2010/2	2011
Area/Region	No. of fields surveyed	Early season survey	Late season survey
Burdekin	7	16th Feb.	19th May
Emerald	11	24th Nov.	22nd Feb.
Theodore/Moura	9	25th Nov.	Floods destroyed all crops
St George/D'bandi	16	14th – 15th Dec.	2nd – 3rd Mar.
Darling Downs	13	16th – 17th Dec.	10th Mar.
Bourke/Walgett	14	18th Nov.	14th – 15th Mar.
Macintyre	12	24th – 25th Nov.	31st Mar. – 1st Apr.
Gwydir	12	4th & 24th Nov., 14th Dec.	8th, 28th & 31st Mar.
Namoi	22	22nd, 26th & 29th Nov.	7th, 10th, 11th, 29th Mar, 6th, 7th Apr.
Macquarie	12	22nd Dec.	7th Apr., 12th – 13th Apr.
Lachlan	8	10th Nov., 20th Dec.	16th Mar., 18th Apr.
Murrumbidgee	9	21st Dec.	17th Mar.

Pathology survey DISEASES

field. The highest incidence of seedling mortality was 36.7% in crops in the Murrumbidgee Valley and the lowest incidence was 18.6% in crops in the Burdekin area of Queensland where planting takes place in late December and January.

FIGURE 1: Mean seedling mortality in the 2010–11 season. Seedling mortality is derived from the difference between the number of seed planted and the number of plants established.

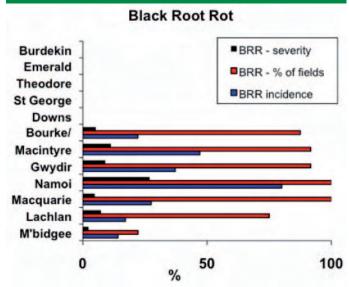

Fusarium wilt

The wet spring, followed by a cool and wet summer, contributed to an increased incidence of Fusarium wilt and negated the usual benefits associated with a delayed sowing. Conversely, the widespread adoption of the new, more resistant, varieties reduced the potential impact of the disease. Fusarium wilt was very obvious during early season surveys where up to 11% of seedlings had been killed in some fields. Later in the season common symptoms included gaps in the stand, stunted growth and a dark brown discoloration of the vascular tissue in the stem. Wilting, dead and dying plants were not always present as was observed in previous years with more susceptible varieties. There was one new report of Fusarium wilt east of Goondiwindi in Queensland, two new reports of Fusarium wilt in the Gwydir valley of NSW, the first report of Fusarium wilt on a farm in the Lachlan Valley and the first report of Fusarium wilt on a farm in the Emerald area. These new reports were confirmed by Dr Linda Smith (Agriscience Queensland, DEEDI) who provides a free, confidential diagnostic service for Fusarium wilt funded by the Australian cotton industry. All five new reports were found to be caused by the Downs strain of the pathogen.

Fusarium wilt was observed in 22 of the 89 crops surveyed in NSW (Figure 2). including eleven of the 12 crops inspected in the Macintyre valley and seven of the 12 crops surveyed in the Gwydir valley. The incidence of Fusarium wilt averaged 8.8% and 9.9% respectively, for these two production areas where four fields had in excess of 25% of plants affected. Though Fusarium wilt is known to be present and widespread in the Macquarie valley and the upper Namoi valley it was not detected in these areas in either the 2009/10 or the 2010–11 disease surveys. The disease was observed in only 11 of the 47 crops surveyed

The disease was observed in only 11 of the 47 crops surveyed in Queensland including nine of the 13 crops inspected on the Darling Downs. The incidence of Fusarium wilt averaged 2.8% and 0.6% respectively, for the Darling Downs and St George areas and only exceeded 5% in two fields (Figure 2).

FIGURE 2: The average distribution and incidence of Fusarium wilt of cotton in the 2010–11 season.



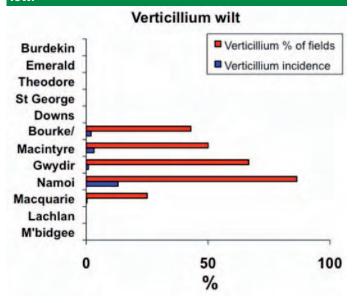
Transects have been established in fields near Theodore, St George, Boggabilla and Gunnedah. The incidence of Fusarium wilt is assessed along these transects in seasons when cotton is grown in these fields. Assessments during the 2010–11 show an increase of between 60% and 320% in disease incidence in five of the six transects despite a four-year rotation with cereals, fallows and sorghum in two of the fields. The only decline in the incidence of Fusarium wilt was observed in a rain-grown crop growing in a field that had not grown cotton for five years.

Black root rot

Black root rot of cotton is favoured by cool weather conditions early in the season. The pathogen colonises the root surface, suppresses the development of secondary roots and stunts seedling growth. When temperatures rise the tap root expands and the blackened root surface is sloughed off and disappears. The seasonal conditions in the spring and early summer of 2010 were very favourable for black root rot.

FIGURE 3: The distribution, incidence and severity of black root rot in cotton in the 2010–11 season.

Black root rot was observed on 93% of farms visited and in 83% of the fields surveyed in NSW (Figure 3). The average


incidence within fields was 41% and mean disease severity was 1.18 (11.8% of each tap root blackened). The disease was most common in crops in the Namoi valley where it was observed in all of the fields surveyed. The average incidence within fields was 80% and the incidence exceeded 80% (of plants infected) in ten of the fields. The mean disease severity was 2.69 (26.9% of each tap root blackened). There were also fields in both the Gwydir and Macintyre valleys where the incidence of black root rot exceeded 90%. The incidence of black root rot in crops in the Namoi, Gwydir and Macintyre valleys was substantially higher than ever recorded previously.

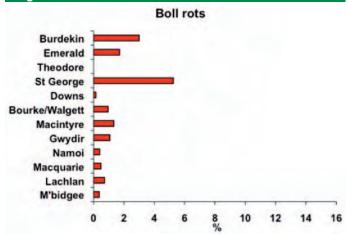
Black root rot has previously been observed in all Queensland cotton production areas except the Burdekin. There were several reports of black root rot in cotton crops on the Darling Downs and at St George. However, wet weather delayed the surveys until mid December by which time the weather had warmed and plants were growing away from the symptoms.

Verticillium wilt

Verticillium wilt is also favoured by cooler weather and is rarely observed in Queensland production areas. The disease was observed in 36% of fields surveyed in NSW. However, the average incidence was only 4.1% of plants infected (Figure 4). The average incidence of Verticillium wilt of cotton in NSW was estimated in previous surveys to be 3.8% and 3.7% for the 2008/09 and 2009/10 seasons.

FIGURE 4: The distribution and incidence of Verticillium wilt of cotton in the 2010–11 season. The disease was present in many areas but the incidence was generally low.

Verticillium wilt was observed in 86% of fields surveyed in the Namoi valley where the average incidence of the disease was 13.1% of plants infected (compared to 14.0% and 12.7% in the previous two seasons). The worst affected fields had 41%, and 71% of plants with symptoms. It is interesting to note that these fields had had 68% and 96.5% of plants with black root rot at the beginning of the season. The interactions between the pathogens that cause black root rot and Verticillium wilt and the effect of that interaction on cotton needs to be investigated.


Boll rots

The reported incidence of boll rots (Figure 5) can be affected by planting date, survey date, distribution of bolls on the plant and the size and density of the crop canopy as well as by the timing and intensity of wet weather. Overcast weather and waterlogging contributed to low retention early in the season and few low bolls in many crops. This resulted in a lower incidence of the boll rots that develop when soil is splashed up onto low bolls.

Delayed maturity in crops on the Darling Downs and at Emerald resulted in few open bolls and consequently a lower incidence of boll rots at the time of survey. In contrast, the average incidence of boll rot in the more advanced crops in the St George and Dirranbandi area was 5.25% and exceeded 10% in four of the 16 crops surveyed.

The average incidence of boll rots was recorded as 0.7% for NSW and 2.7% for Queensland (2.7% and 1.9% in 2008/09; 9.7% and 7.3% in 2009/10).

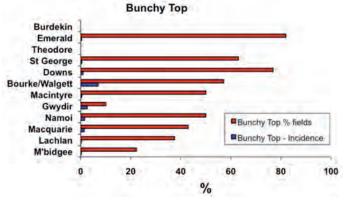
FIGURE 5: The average incidence of boll rots in each of the cotton production areas for the 2010–11 season. These figures may under-estimate the final incidence as assessments are usually completed after the final irrigation and several weeks before harvest.

Bunchy top

According to the 2007/08 disease survey cotton bunchy top was observed in 10% of crops inspected in Queensland and in 14% of fields inspected during the NSW surveys.

During the 2008/09 season symptoms were observed in 7% of crops inspected in Queensland and the average incidence of bunchy top in these crops was <0.1%. Bunchy top was observed in 11% of fields inspected during the NSW surveys where the average incidence was 0.2% of plants with symptoms. The incidence of bunchy top in three crops in the Lachlan Valley was found to be 5%, 4% and 1%.

The 2009/10 disease survey report indicated that "Bunchy top was commonly observed on volunteer cotton plants surviving over from the previous season" and "A large area of severely affected plants was observed in a field near Theodore". The disease was found in 6% of crops inspected in Queensland and 7% of crops in NSW.


Bunchy top was observed in 73% of crops inspected in Queensland during late February and early March, 2011 (Figure 6) and the average incidence of bunchy top in these crops was 0.53%. Symptoms were apparent on single plants and rarely in patches. The incidence of bunchy top in some fields on the Downs was up to 3%.

In Emerald symptoms were apparent in the upper canopy while at St George and on the Darling Downs affected plants

Pathology survey DISEASES

were stunted and largely hidden within the canopy. Bunchy top was seen in 10 of the 13 crops inspected on the Downs. It is interesting to note that the three crops where the disease wasn't observed were all Siokra 24BRF while the 10 infected crops were either Sicot 71BRF or Sicot 74BRF.

FIGURE 6: The distribution and average incidence of bunchy top in each of the cotton production areas for the 2010–11 season.

In NSW, bunchy top was observed in 43.0% of crops surveyed in March and April, 2011 (See Table A) with the average incidence being 2.1%. Bunchy top was particularly apparent in some fields in the Bourke/Walgett region where the average incidence of cotton plants with symptoms was 6.9%. The incidence of the disease in two crops on one farm was estimated to be 48.5% and 43%. The worst affected fields in the Namoi and Gwydir valleys had 28.5% and 25.5% of plants with symptoms.

There was an apparent association between a high incidence of bunchy top in a crop and large numbers of volunteers with bunchy top symptoms nearby.

Other diseases and disorders

Alternaria leaf spot and premature senescence. Alternaria leaf spot was present at low levels in almost all crops and was generally of minor significance. Premature senescence caused some concern in some crops to the North and West of Emerald. Wet weather through until early April favoured some premature senescence (2.3% of plants), and leaf spots causing defoliation of lower leaves in some crops in the Burdekin valley of Queensland. Tobacco Streak Virus (TSV). TSV was observed in nine of the 14 crops inspected in central Queensland in November 2010. The average incidence of the virus was 0.61% with 3% of plants with symptoms in one field.

Seed rot. Symptoms of seed rot include a soft brown rot of developing seed within the bolls that may not become apparent until the bolls either drop or open prematurely. Only one or two locks, or sometimes the whole boll, can be affected. Seed rot appears to be caused by either bacteria or fungi that are introduced into the young developing boll by sucking insects such as the green vegetable bug. The average incidence of seed rot in cotton crops in the Burdekin valley was estimated to be 2.3% (5.6% in the 2010 season).

Acknowledgments:

These surveys were made possible with the financial support of the Cotton Research & Development Corporation, the Cotton Catchment Communities CRC, Cotton Seed Distributors Ltd., NSW Department of Primary Industries and the Queensland Department of Education, Economic Development and Innovation.

Put your best foot foward.

Come Clean Go Clean

Best Practice

SENDING A SAMPLE FOR DIA	GNOSIS BY A PATHOLOGIST	- ATTACH A COMPLETED FORM	TO EACH SAMPLE
Collected/Submitted by: (e.g. Cotton Extension Officer)		Address/Email/Fax/Telephone:	
Property name and field number:		Date collected:	
Grower/Agronomist		Grower's address or area/locality:	
Mark (X) as appropriate			
SYMPTOMS	DISTRIBUTION	INCIDENCE/SEVERITY	CROP GROWTH STAGE
☐ Poor emergence or seedling depth	☐ One field only	☐ All plants	□Irrigated
☐ Leaves: spots or dead areas	☐ In several fields	☐ Scattered single plants	☐ Dryland/rain-grown
☐ Leaves: discoloured	☐ In all fields	☐ Scattered patches of plants	☐ Seedling stage
☐ Leaves: mottled	☐ One variety only	☐ In a large patch (>5 m)	☐ Setting squares
☐ Leaves or shoots: distorted or curled	☐ Several varieties affected	☐ In a small patch (1–5 m)	☐ Early flowering
☐ Plants stunted	☐ Some rows more affected	☐ In a small patch (<1 m)	☐ Peak flowering
☐ Plants wilting	☐ On lighter soil types	☐ Plants dead	☐ First bolls open
☐ Premature plant death	☐ On heavier soil types	☐ Plants defoliating	□ Defoliated
☐ Bolls: spots or dead areas	☐ In poorly drained area(s)	☐ One to a few plants only	☐ Ready to pick
☐ Roots: discoloured, bent, pruned, etc.	☐ Other: (please specify)		
OTHER INFORMATION			
• Cultivar			
Paddock History			
Nearby crops			
Rainfall in last 10 days			
Average temperature range over the la	st 10 years		
Date of last irrigation			
Date of last cultivation			
Please contact an Australian Cotton Inc Pathologist and address for submitting		nm member or district agronomist to	determine the appropriate
IF FUSARIUM WILT IS SUSPECTED, SAM DEEDI Qld Ecoscience Precinct – contact When sending samples:		: linda.smith@deedi.qld.gov.au	

- Send multiple samples (e.g. more than 1 leaf, stem or plant).
- If possible include a healthy plant as well as the diseased plant material.
- It is better to despatch samples early in the week rather than just before the weekend.
- Never wrap samples in plastic. Dry or slightly dampened newspaper is better.
- When collecting seedlings dig them up rather than pull them out. Include some soil.
- Several sections of stem (10–15 cm long) are usually adequate for wilt diseases.
- Keep the sample cool and send as soon as possible.

Cotton Disease Control Guide

Tracey Leven, CRDC

Registration of a pesticide is not a recommendation for the use of a specific pesticide in a particular situation. Growers must satisfy themselves that the pesticide they choose is the best one for the crop and disease. Growers and users must also carefully study the container label before using any pesticide, so that specific instructions relating to the rate, timing, application and safety are noted. This publication is presented as a guide to assist growers in planning their pesticide programs.

If there is any omission from the list of chemicals, please notify the authors.

IMPORTANT - avoid spray drift

Take every precaution to minimise the risk of causing or suffering spray drift damage by:

- Planning your crop layout to avoid sensitive areas, including homes, school bus stops, waterways, grazing land and nontarget crops.
- Ensuring that all spray contractors have details of any sensitive areas near spray targets.

D

350 g/L

metalaxyl-m

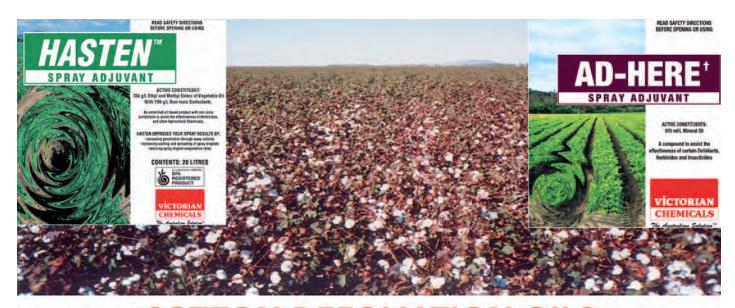
- Carefully following all label directions.
- Consulting with neighbours to minimise risks from spraying near property boundaries. Keep neighbours informed of your spraying intentions

Spray Log Books

To assist in record keeping for pesticide applications, Spray Log Books can be purchased from:

DEEDI Qld, cost \$7.50 each plus postage and handling. Contact DEEDI Qld in Toowoomba – 07 4688 1200 or in Dalby – 07 4669 0800 to place an order.

DPI NSW, cost \$12.00 each plus postage and handling. Contact DPI NSW, Yanco – 1800 138 351.


ABBREVIATIONS USED IN TABLES 37–38

0.043 L/100 kg seed For Fusarium wilt disinfection. Commercial application recommended.

EC = Emulsifiable concentrate FC = Flowable concentrate SC = Suspension concentrate WDG = Water dispersible granule WP = Wettable powder

TABLE 37: Cont	rol of cotton dis	eases		
Active ingredient	Fungicide chemical group	Concentration and formulation	Application rate of product	Comments
Alternaria leaf spot				
mancozeb	Υ	750 g/kg WG	2.5 kg/ha	Pima varieties only. Do not apply before flowering. Begin applications as soon as disease symptoms appear and before each infection period. DO NOT apply more than 4 sprays per season.
Rhizoctonia solani (D	Damping off)			
tolclofos-methyl	Χ	500 g/L SC	0.12 L/ha or 0.12 L/10km row	QLD and NSW only. Apply as an in-furrow spray or by water injection at time of planting.
		100g/L	40g/kg of seed	Put with seed immediately before planting
Pythium spp. and Ph	<i>ytophthora</i> spp. (Dar	mping off)		
metalaxyl-m	D	350 g/L EC	0.1 L/100 kg seed	Commercial application recommended.
Rhizoctonia solani ai	nd <i>Pythium</i> spp.			
azoxystrobin + metalaxyl-m + fludioxonil	K D L	75 g/L SL 37.5 g/L SL 12.5 g/L SL	0.2 L/100 kg seed	Commercial application recommended. This seed treatment should be used as part of an integrated strategy to control seedling disease.
Fusarium Wilt				
acibenzolar-s-methyl		500 g/L FC	1.2 mL/100 kg seed	Seed treatment for suppression of Fusarium wilt and Black root rot.

Active ingredient	Concentration and formulation	Trade name	Marketed by
acibenzolar-s-methyl	500 g/L FC	Bion Plant Activator	Syngenta
azoxystrobin +	12.5 g/L SL	Dynasty	Syngenta
metalaxyl-m +	37.5 g/L SL		
fludioxonil	75 g/L SL		
mancozeb	750 g/kg DF	AC Masquerade	Axichem
	750 g/kg DF	Innova Mancozeb 750	Syngenta
	750 g/kg DF	Mancoflo	Amgrow
	750 g/kg DF	Mancozeb	Forward
	750 g/kg DF	Mancozeb 750	Imtrade
	750 g/kg DF	Mancozeb 750	Apparent
	750 g/kg DF	Mancozeb 750	Blue Star
	750 g/kg DF	Mancozeb 750 DF	Farmoz
	750 g/kg DF	Mancozeb 750	Genfarm
	750 g/kg DF	Mancozeb 750	Growchoice
	750 g/kg DF	Mancozeb 750 DF	Sabero
	750 g/kg DF	Mancozeb 750 DF	Titan AG
	750 g/kg DF	Manzate DF	Dupont
	750 g/kg DF	Penncozeb 750 DF	Arkema
	750 g/kg DF	Unizeb	United Phosphorus Limited
	750 g/kg WG	Dithane Rainshield Neo Tec	Dow AgroSciences
	750 g/kg WG	Manzeb	Farmalinx
	750 g/kg WG	Mancozeb 750 WG	Ospray
	750 g/kg WG	Manfil	Runge Agrichems
metalaxyl-m	350 g/L ES	ApronXL 350	Syngenta
olclofos-methyl	500 g/kg WP	Rizolex	Sumitomo Chemicals
, and the second	500 g/L SL	Rizolex liquid	Sumitomo Chemicals
	500 g/L SL	Tolex	Genfarm

COTTON DEFOLIATION OILS

Hasten - On label with reputable Defoliants, Herbicides, Insecticides. Endorsed by Bayer, Sipcam, E-chem.

Adhere - On label for use as a cotton defoliation oil.

For more information visit www.vicchem.com or contact

Dugald MacFarlane on 0421 901 424 or Graeme Hackett on 0428 710 400

Cotton growth regulators and defoliants

Tracey Leven, CRDC

Growth regulators

Excessive vegetative growth is a problem because it reduces the retention of fruit and delays maturity and results in reduced efficacy of insecticides due to poor penetration of the canopy. To determine if growth regulators are required see Cotton Seed Distributors' website (www.csd.net.au) to calculate vegetative growth rates. For more information refer to 2011/12 Cotton Production Manual.

Defoliation

The safe timing of defoliation is when the youngest boll expected to reach harvest is physiologically mature. This usually occurs when 60–65% of bolls are open. The other method of assessing physiological maturity is when there are 3–4 nodes of first position bolls above the highest cracked first position boll (last harvestable boll), known as nodes above cracked boll (NACB). For more information on defoliation see FibrePak and 2011/12 *Cotton Production Manual*.

Registration of a chemical is not a recommendation for the use of a specific chemical in a particular situation. Growers must satisfy themselves that the chemical they choose is the best one for the crop and situation.

Growers and users must also carefully study the container label before using any chemical, so that specific instructions relating to the rate, timing, application and safety are noted. This publication is presented as a guide to assist growers in planning their agronomy programs. If there is any omission from the list of chemicals, please notify the authors.

IMPORTANT— avoid spray drift

Take every precaution to minimise the risk of causing or suffering spray drift damage by:

- Planning your crop layout to avoid sensitive areas, including homes, school bus stops, waterways, grazing land and nontarget crops.
- Ensuring that all spray contractors have details of any sensitive areas near spray targets.
- Consulting with neighbours to minimise risks from spraying near property boundaries. Keep neighbours informed of your spraying intentions near property boundaries. Make it clear that you expect the same courtesy from them.
- · Carefully following all label directions.
- Paying particular attention to wind speed and direction, air temperature and time of day before applying pesticides using buffer zones as a mechanism to reduce the impact of spray drift or overspray.
- Keeping records of chemical use and weather conditions at the time of spraying.

ABBREVIATIONS USED IN TABLES 39-40

AC = Aqueous concentrate L = Liquid LC = Liquid concentrate SC = Suspension concentrate WDG = Water dispersible granule

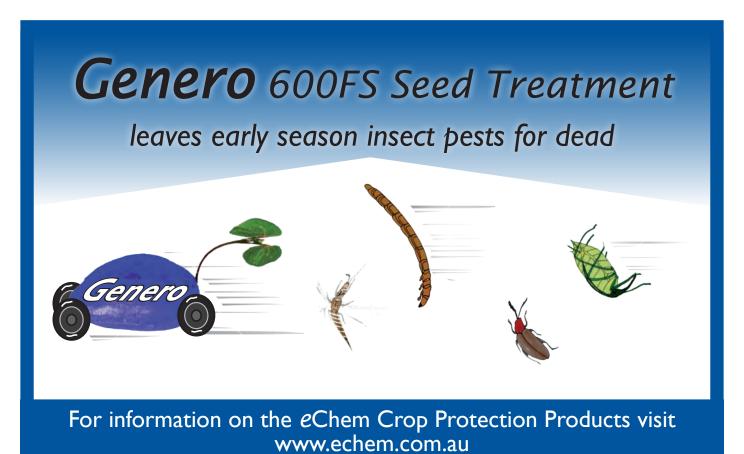

TABLE 39: Plant growth regulators						
Active ingredient	Concentration and formulation	Application rate of product	Comments			
Mepiquat	38 g/L AC	0.25–0.6 L/ha 0.25–1.0 L/ha	Pre flowering rate. Post flowering rate. Apply no more than 1.5 L/ha in total. See label for application times.			
		0.75–2.0 L/ha	Single application rate. Use high rate where crop growth is excessive, between 1st flower and cut out. Check label.			

TABLE 40: Plant g	rowth regulators trade names	and marketers	
Active ingredient	Concentration and formulation	Trade name	Marketed by
Mepiquat	38 g/L AC	Adjust 38	Rotam
	38 g/L AC	Chemquat 38	ChemAg
	38 g/L AC	Concorde	Nufarm
	38 g/L AC	Fix 38	Chemtura
	38 g/L AC	Fortune	Syngenta
	38 g/L AC	Mepi-C,	Miller Chemical an
	38 g/L AC	Mepidet	Farmalinx
	38 g/L AC	Mepiquat	Ospray
	38 g/L AC	Mepiquat 38	Accensi
	38 g/L AC	Mepiquat 38	eChem
	38 g/L AC	Mepiquat 38	Agriwest
	38 g/L AC	Mepiquat 38	Conquest
	38 g/L AC	Mepiquat 38	Genfarm
	38 g/L AC	Mepiquat 38	Kenso Agcare
	38 g/L AC	Mepiquat 38	Pacific
	38 g/L AC	Mepiquat 38	Rainbow
	38 g/L AC	Mepiquat 38	Titan AG
	38 g/L AC	PiQme 38	United Phosphorus
	38 g/L AC	Pix	BASF
	38 g/L AC	Pix	Nufarm
	38 g/L AC	Reign	Bayer CropScience
	38 g/L AC	Reward	Farmoz

PGRs & DEFOLIANTS

Active ingredient	Concentration	Application rate of	Comments	
	and formulation	product		
Cotton seed oil	860 g/L LQ	2 L/ha	Apply in combination with thidiazuron as specified on the label.	
Diquat	200 g/ L AC	2.0–3.0 L/ha	See critical comments on label. May damage green bolls.	
Ethephon	720 g/L AC	0.5–1.0L/ha	Accelerated boll opening in combination with a defoliant	
		1.3L/ha	Pre conditioning	
		2.0-3.0L/ha	Acceleration of boll opening	
Ethephon + AMADS	275 g/L +	0.5–1.0 L/ha	Defoliation and accelerated boll opening.	
	873 g/L AC	3-4 L/ha	Boll opening and supplementary defoliation.	
		4 L/ha	Boll opening.	
Ethephon +	720 g/L +	0.33–0.67 L./ha 1.3–2.5	Enhancement of defoliation. Must have minimum 30 L water/ha. Acceleration of	
cyclanilide	90 g/L SL	L/ha	boll opening and enhancement of defoliation.	
Flumiclorac–pentyl	100 g/L	0.6–0.9 L/ha +	Defoliation, first application once natural senecence has commenced and 60%	
		360 g ai/ha ethephon	open bolls. Apply with 2.0 L/ha DC Tron Cotton Spray Oil.	
		0.45 L/ha + 1440 gai/ha ethephon	Apply 4–10 days later. Apply when canopy is suitably open to allow good penetration of ethephon.	
Paraffinic oil	F02 a/LLO	0.5–1.0 L/100 L water	Compatible with thidiazuron and ethephon.	
Parattiffic Oil	582 g/L LQ 598 g/L EC	0.5 L/ha	Apply in combination with defoliants such as Dropp and Prep.	
	653 g/L EC	0.5 L/ha	Apply in combination with defoliants such as Drop and Prep	
	792 g/L EC	0.5 L/ha	Apply with Dropp Ultra or DroppWP in accordance with their labels.	
	815 g/L EC	2 L/100 L	Apply in combination with thidiazuron defoliant.	
	830 g/L EC	2 L/100 L	Apply in combination with thidiazuron defoliant. Apply in combination with thidiazuron defoliant.	
D			· · ·	
Paraquat + diquat	135 g/L + 115 g/L AC	1.2–1.6 L/ha	Apply to dryland and moisture stressed cotton. Can damage immature green bolls.	
<u> </u>		2 //		
Petroleum oil	827 g/L LQ 844 g/L	2 L/ha 2 L/ha	Apply in combination with thidiazuron as specified on the label. Apply with Dropp defoliant	
	846 g/L EC	2 L/ha	Apply with Dropp detoliant Apply with Dropp Ultra.	
		2 L/100 L water		
	859 g/L LQ 861 g/L	2 L/ha	Apply in combination with Dropp defoliant as apecified on the label. Apply with Dropp Ultra in accordance with the Drop Ultra label.	
Pyraflufen-ethyl +	25 g/L +	0.04–0.08L/ha	Always apply as a tank mixture with ethephon (1–2 L/ha) and D-C-Tron (2 L/ha).	
n-methyl-2-pyrrolidone	102 g/L EC	0.04-0.00DHd	Apply when the last harvestable boll is physiologically mature.	
Sodium chlorate	300 g/L AC	11.0–22.0 L/ha	Apply when 60–65% bolls are open. Apply 2–3 weeks before anticipated picking	
Joululli Chiorate	300 g/L AC	11.0-22.0 L/11a	dates. Apply when temperatures are high and soil moisture moderate.	
Thidiazuron	490 g/kgWG	0.05–0.1 kg/ha	Ideal conditions.	
TTIIdidZdTOTT	or	0.1–0.15 L/ha	Good conditions	
	500 g/L SL	0.15–0.2 L/ha	Average conditions. Plus 2.0 L/ha cotton spray oil	
	300 g/L 3L	0.15-0.2 Dila	Do not apply under cold conditions.	
Thidiazuron + Diuron	120 g/L +	0.15–0.2 L/ha	Ideal conditions.	
THIGIAZUIOH + DIUIOH	60 g/L SL	0.15–0.2 L/ ha	Good conditions	
	00 g/L 3L	0.25–0.3 L/ha	Average conditions. Plus 2.0 L/ha cotton spray oil	
		0.3–0.4 L/ha	Cold conditions.	
	240/	0.075–0.1 L/ha	Ideal	
	//[[](1/]			
	240g/L			
	+ 120g/L SL	0.1–0.125 L/ha 1.25–1.5 L/ha	Good Plus the label rate of spray oil.	

Defoliant	Concentration and formulation	Trade name	Marketed by
Cotton seed oil	860 g/L LQ	Intac Cotton Spray Oil	Nipro
Diquat	200 g/L AC	Dessiquat	KDpc
·	200 g/L AC	Diakill 200	Sinon
	200 g/L AC	Diquat 200	Chem Ag
	200 g/L AC	Diquat 200	Genfarm
	200 g/L AC	Diquat 200	Kenso
	200 g/L AC	Diquat 200	Syngenta
	200 g/L AC	Diquat 200	Titan AG
	200 g/L AC	Hydrogel D	Hydrogel
	200 g/L AC	Regione	Farmalinx
	200 g/L SC	Sanction 200	Country
thephon	720 g/L AC	Ethephon	eChem
·	720 g/L AC	Ethen 720	Farmalinx
	720 g/L AC	Ethephon 720	Agriwest
	720 g/L	Ethephon 720	ChemAg
	720 g/L AC	Ethephon 720	Conquest
	720 g/L	Ethephon 720	Country
	720 g/L AC	Ethephon 720	Genfarm
	720 g/L AC	Ethephon 720	Kenso
	720 g/L	Ethephon 720	Ospray
	720 g/L AC	Ethephon 720	Rainbow
	720 g/L AC	Ethephon 720	Runge
	720 g/L AC	Ethephon 720	Titan AG
	720 g/L AC	Galleon	Nufarm
	720 g/L AC	Prep 720	Bayer CropScience
	720 g/L AC	Promote 720	Farmoz
thephon + AMADS	275 g/L + 873 g/L AC	CottonQuik	Nufarm
:hephon + cyclanilide	720 g/L + 90 g/L SC	Finish 720	Bayer CropScience
umiclorac-pentyl	100 g/L	Resource	Sumitomo

Mobile:0428 658 390

col.hibbard@e-chem.com.au

PGRs & DEFOLIANTS

<u> </u>	ts trade names and marke		
Defoliant	Concentration and formulation	Trade name	Marketed by
Paraffinic oil	582 g/L LQ	Hustle Spray Adjuvant	Allfire
	582 g/L LQ	Infuse	Rygel
	582 g/L LQ	Penatrol	Alphachem
	582 g/L LQ	Pro Stickup	CropSmart
	582 g/L LQ	Smartup	5 Heads
	582 g/L LQ	Uptake Spraying	Dow AgroSciences
	598 g/L EC	Oil Enhance Spray Adjuvant	Sacoa
	598 g/L EC	Power Surge Spray Adjuvant	Conquest
			•
	653 g/L EC	Inbound Spray Adjuvant	Victorian Chemicals
	792 g/L SC	Canopy Insecticide	Caltex Australia
	815 g/L EC	Biopest Paraffin Oil	Sacoa
	815 g/L EC	Bioclear	Caltex
	830 g/L EC	Trump	Victorian Chemicals
Paraquat + diquat	135 g/L + 115 g/L AC	Alarm	Sipcam Pacific
	135 g/L + 115 g/L AC	Blowout	Agroreg
	135 g/L + 115 g/L AC	Blowout	CMS
	135 g/L + 115 g/L AC	Blowout	Ozcrop
	135 g/L + 115 g/L AC	Brown Out 250	4Farmers
	135 g/L + 115 g/L SC	Combik 250	Sinon Australia
	135 g/L + 115 g/L SC	Di-par 250	Genfarm
	135 g/L + 115 g/L SC	EOS	Titan AG
	135 g/L + 115 g/L SC	Glamoxone Gold	Syngenta
	135 g/L + 115 g/L SC	Paradat	Farmalinx
	135 g/L + 115 g/L SC	Paradym 250	Ronic International Titan AG
	135 g/L + 115 g/L SC	Paraquat/Diquat	AGCP
	135 g/L + 115 g/L SC	Paraquat/Diquat	Country
	135 g/L + 115 g/L SC	Paraquat/Diquat	NAADCO
	135 g/L + 115 g/L SC	Paraquat/Diquat	Rainbow
	135 g/L + 115 g/L SC	Paraquat/Diquat	Sanonda
	135 g/L + 115 g/L SC	Premier 250	Halley
	135 g/L + 115 g/L SC	Quash Duo 250	Hextar
	135 g/L + 115 g/L SC	Revolver	Nufarm
	135 g/L + 115 g/L SC	Spray.Seed 250	
			Syngenta
	135 g/L + 115 g/L SC	Spraykill 250	Chem Ag
	135 g/L + 115 g/L SC	Sprayout 250	Ospray
	135 g/L + 115 g/L SC	Scorcher 250	Conquest
	135 g/L + 115 g/L SC	Speedy 250	Kenso
	135 g/L + 115 g/L SC	Spray & Sow	Farmoz
	135 g/L + 115 g/L SC	Sprayplant 250	Sipcam
	135 g/L + 115 g/L SC	Tombstone	Agrismart
	135 g/L + 115 g/L SC	Uni-Spray	United Phosphorus Limited
Datus lavina ail			•
	135 g/L + 115 g/L SC	Wildfire	United Farmers
Petroleum oil	827 g/L L	D-C-Tron	Caltex
	844 g/L	Sacoa Summer	Sacoa
	846 g/L EC	Broadcoat	Caltex
	859 g/L L	Cottoil	Sacoa
	861 g/L	Empower	Innovative Chemical Services
Pyraflufen-ethyl + n-methyl-2-pyrrolidone		ETee	Sipcam Pacific
Sodium chlorate	300 g/L AC	Total Ag Leafex	Total Ag
Fhidiazuron	490g/kg WP	Lanceadrop	Lances Link
IIIIulazuloti	500 g/L SC	Dropp Liquid	Bayer CropScience
	500 g/L SC	Escalate 500	Farmoz
	500 g/L SC	M ace	Conquest
	500 g/L SC	Reveal Liquid	Nufarm
	500 g/L SC	Tentacle	Agriwest
	500 g/L SC	Tradewyns Thidiazuron 500	Ospray
	500 g/L SC	Thidiazuron 500	Country
	500 g/L SC	Thidiazuron 500	Genfarm
	500 g/L SC	Thidiazuron 500	Titan AG
	500 g/L SC	Thidiazuron 500 SC	eChem
	E00 // CC	TI-:-I:	1/ a a a a A a a a a a
	500 g/L SC 500 g/L SC	Thidiazuron 500 SC Thiron	Kenso Agcare Farmalinx

Cotton Industry Biosecurity Plan

Sharyn Taylor, Plant Health Australia Susan Maas and Cherie Gambley, Department of Employment, Economic Development and Innovation Lewis Wilson, CSIRO Greg Kauter, Cotton Australia

In 2009, Plant Health Australia (PHA), Cotton Australia Ltd and the Cotton Industry Biosecurity Group reviewed the Cotton Industry Biosecurity Plan (IBP). This plan, originally released in 2006 was formulated by industry, state and federal governments and Plant Health Australia to assist with identification of biosecurity priorities and allocation of resources to critical areas and the generation of strategies that help adoption of recommended practices and awareness of new biosecurity threats.

Why does the Australian cotton industry need a biosecurity plan?

Australia's geographic isolation has meant that it is relatively free of many pests that cause significant problems for cotton production overseas. Maintaining Australia's freedom from these exotic pests will help ensure the future profitability, sustainability and marketability of Australian cotton.

The incursion of Mealybug in cotton has highlighted the impact of a new pest incursion. By the time this pest was reported and diagnosed, it was considered not technically feasible to eradicate, causing major problems across the industry.

Industry biosecurity aims to minimise risks posed by exotic organisms. For this to be effective it relies on the involvement of all stakeholders – including growers, industry, government agencies and the public. Through the IBP the cotton industry has in place procedures to:

- Identify the highest risk pests from overseas (threat identification and analysis);
- Guard the industry against exotic pests (risk mitigation activities);

- Know when an exotic pest has arrived (surveillance) and identify it (diagnostics); and,
- Deal with exotic pests if they are found (contingency plans). To date, 12 key organisms have been identified as threats to the industry based on the economic risk they present should they become established in Australia. At this stage, only invertebrate pests an diseases have been identified as threats although weeds may be revisited at future reviews.

A copy of Version 2 of the Cotton IBP is available from the PHA website biosecurity section.

How have the pest and disease threats been determined?

The relative importance of potential pest problems have been ranked by experts in the IBG by estimating the level of threat associated with the probability of the pest's entry into Australia, factors influencing the pest's establishment and spread, the difficulty of identification and/or eradication, as well as the likely impacts of the pest on production and market access. It should be noted that, just prior to their detection, Mealybugs were just being added to the pest lists in the IBP review process. This shows that new threats can emerge at any time.

Farm biosecurity

Cotton growers are the key to protecting Australian cotton crops from exotic insects and diseases. Growers should look out for unusual crop symptoms and implement practices that prevent or minimise pest incursions.

Good farm hygiene – come clean, go clean – should be practiced on all farms regardless of whether pests or diseases are present, and farm hygiene has been a critical of pest control to limit the spread and impact for Fusarium wilt, and Mealybugs. Pest control will also minimise the spread of an exotic pest before their presence is known or after they are identified. Diseases can be spread by animals, people and machinery so farm hygiene and restricting unnecessary people

Cotton growers are the key to protecting Australia's crops from exotic insects and diseases like cotton leaf curl virus.

It is important that you are aware of the risk, and if you spot anything unusual on your crop you should always check it out and call your local entomologist, pathologist or the Exotic Plant Pest Hotline on 1800 084 881. The call is free (except from mobiles) and early detection will help protect your industry.

Visit www.planthealthaustralia.com.au for further information.

AUSTRALIAN COTTON GROWERS
RESEARCH ASSOCIATION INC.

This project has received funding from the Australian Government

1800 084 881

BIOSECURITY

and vehicle movement around the farm will prevent disease spread. Volunteers and some weeds can harbour pests and diseases. So controlling weeds in non-crop areas around the farm reduces the potential for pest and disease build up. Visits to farms overseas should be declared on re-entry to Australia. Prior to returning to Australia, wash all clothes and foot wear as well as hair which may carry fungal spores, bacteria, or even small insects.

To assist cotton growers with farm biosecurity, Cotton Australia, DEEDI Qld and PHA have produced the Cotton Farm Biosecurity Manual. This manual provides support to growers using the *my*BMP on-line system to identify and put in place farm biosecurity measures to better protect their crops.

Surveillance in the cotton industry

A major part of implementing the Cotton IBP and Farm Biosecurity measures is surveillance for exotic plant pests. The key aim of surveillance is for detection of pests as early as possible. The benefits of early detection of a new pest to the cotton industry will be:

- An increased chance that eradication or containment within a limited area will be successful:
- Reduced cost to industry and the surrounding community if eradication or containment can be achieved; and,
- More rapid implementation of new management practices if eradication is not possible.

While AQIS has strict controls for the introduction of cotton plants and seeds at the border, many of these pests are small or difficult to see. There is still a chance of their accidental introduction as hitchhikers, such as in packing material or in soil or plants in poorly cleaned machinery and equipment. Some pests can also arrive on people's clothing, boots and hair or in accidentally or deliberately undeclared plant material. Surveillance for several exotic pathogens is undertaken as part of routine assessment of cotton field trials by DPI NSW, DEEDI Qld and cotton breeding programs.

Reporting unusual pests

Any unusual plant pest should be reported immediately to your Department of Primary Industry (DPI) or by ringing the Exotic Plant Pest Hotline. Early reporting enhances the chance of effective control and eradication. It is important to note that suspect material should not be moved or collected without seeking advice from the DPI as incorrect handling could spread the pest or make samples unsuitable for identification.

How can we learn more?

More information about prevention and control of pests and diseases can be found on the Cotton CRC website at www. cottoncrc.org.au

Further information on cotton industry biosecurity activities please contact Greg Kauter (02) 9669 5222 or go to www.cottonaustralia.com.au/research/biosecurity/

To view the Australian Cotton Industry Biosecurity Plan visit: www.planthealthaustralia.com.au/ or *my*BMP Biosecurity Module

Phone the Exotic Plant Pest Hotline on 1800 084 881.

Exotic pests and diseases of greatest threat to Australian cotton

Cotton boll weevil

Anthomonus grandis

Cotton boll weevil is specific to cotton and causes large yield losses due to damage to developing bolls and subsequent reduction in lint production. In the USA, control of cotton boll weevil using insecticides costs hundreds of millions of dollars.

Boll weevil. (Jack Kelly Clark, University of California, www.ipm.ucdavis.edu)

Spider mites

Tetranychid mites

Spider mites are in the group that includes ticks. They feed on the undersides of leaves, sucking out the cell contents. Their damage causes a characteristic bronzing of leaves, and if uncontrolled can dramatically reduce yield and fibre quality. Several species are found in Australian cotton, the most common of which is the two-spotted spider mite. However, overseas there are a range of other species that have different host preferences, cause more severe damage or have resistance to some of our key acaricides.

Exotic threats BIOSECURITY

Indian green jassid

Amrasca devestans

Indian green jassid is a sap-sucking insect pest that can cause yield losses of up to 25%. While several 'jassid' species are found in Australian cotton the damage they cause is relatively minor, rarely if ever affecting yield. Green jassids inject a toxin as they feed that causes leaves and bolls to drop and can stunt plant growth. Elsewhere green jassids can be managed using resistant varieties and insecticides. Hairy-leafed varieties are used in parts of Africa and the sub-continent where cotton is hand harvested to provide effective resistance against green jassids. Such varieties are not suitable for mechanical harvest as the leaf hairs cause excessive leaf trash in the cotton lint.

Tarnished plant bug

Lygus lineolaris

The tarnished plant bug is a pest of over 250 plant species. In cotton, its feeding causes seed abortion, stem or leaf wilting and poor seed germination. It has 2–5 generations per year and can therefore quickly build up to high levels.

Whitefly

Bemisia tabaci B-type or Q-type

Whitefly feeding results in a sticky residue, sooty moulds, reduced boll size and poor lint quality. Although the B-type whitefly is present in Australia there is a risk of other B-type strains and other biotypes, e.g. Q-type, entering the country with different insecticide resistance profiles. Whiteflies are also vectors of damaging exotic viruses such as cotton leaf curl disease.

Melon aphid

Aphis gossipyi – exotic strains

Aphids damage cotton by feeding on young leaves and bolls which can reduce yield. They produce a sticky residue that can cover leaves resulting in reduced photosynthesis and contamination of lint as bolls open, reducing the crop's value. This species may also carry exotic diseases such as blue disease. As well as the risk of disease, there is a risk that new aphid strains entering the country will have different insecticide resistance profiles, making control more difficult.

Verticillium wilt

Defoliating strains

Australian strains of Verticillium wilt are described as mild in comparison to the defoliating strains that originated in North America but are now becoming more widespread. If established in Australia, management would be reliant on the use of resistant varieties, with a lag of several years before adapted varieties were available.

BIOSECURITY Exotic threats

Cotton leaf curl disease (CLCuD)

CLCuD, sometimes referred to as Gemini virus, can cause yield losses of up to 35% in cotton. It is spread by a whitefly vector. There are at least seven different begomoviruses and several different DNA satellite molecules associated with CLCuD. A cotton plant needs to be infected with at least one begomovirus and one satellite to develop CLCuD.

Symptoms of CLCuD are seen on leaves and initially appear as a swelling and darkening of leaf veins, followed by a deep downward cupping of the youngest leaves then either an upward or downward curling of the leaf margins. Leaf-like structures (enations) on the veins are common and vary in size from only a few millimetres in diameter to almost the size of a normal leaf. These larger structures are often cup-shaped.

Fusarium wilt

Fusarium oxysporum f. sp. vasinfectum – exotic strains

Fusarium wilt is a fungal disease. Strains of Fusarium were identified in Australia in 1993 however the introduction of new strains (races) would increase the difficulty of management as new resistant varieties would be required.

External symptoms can appear in the crop at any stage but most commonly appear in either the seedling phase or after flowering when bolls are filling. Leaves appear dull and wilted before yellowing or browning progresses to eventual death from the top of the plant. Seedlings may either wilt and die or survive, but often with stunted growth. Adult plants may wilt and die, especially under conditions of stress. Some affected plants may re-shoot from the base of the stem. Lengthwise cutting of the stem from affected plants will show continuous brown discolouration of the tissue. The internal discolouration is similar to that of Verticillium wilt but usually appears as continuous browning rather than flecks. Sometimes the discolouration is visible in only one side of the stem. External symptoms do not always reflect the extent of discolouration in the stem.

Fusarium wilt causing vascular discolouration and root knots caused by nematodes. (Chris Anderson, DPI NSW)

Texas root rot

Phymatotrichopsis omnivore

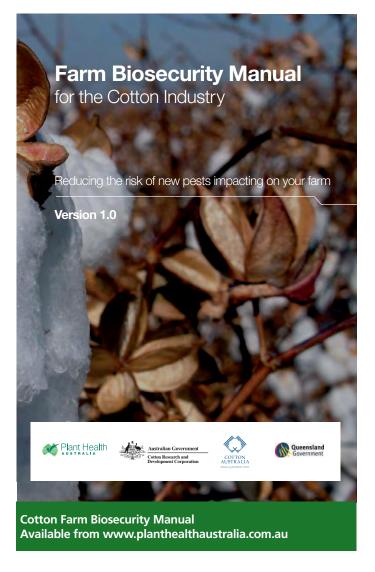
Texas root rot is an extremely damaging fungal disease with a wide host range. It causes sudden death of affected plants, usually during the warmer months. In cotton, infection can result in 100% crop loss. If this disease became established in Australia, control would be extremely difficult as management using rotations and fungicides is usually only partially effective. Symptoms include yellowing or bronzing of leaves, leaves wilt and die; dead leaves usually remain on plant. At this stage, roots are dead and surface is covered with network of tan fungal strands.

Blue disease

Blue disease is a virus specific to cotton that can reduce yield potential by up to 20%. It is spread by a vector, the cotton aphid. It has been associated with plants infected with cotton leaf roll dwarf virus (CLRDV) and has similarities with cotton bunchy top, anthocyanosis and cotton leaf roll. It is not known if the same pathogen causes all these diseases or if there are multiple pathogens causing similar symptoms. CLRDV was not detected from Australian cotton affected by cotton bunchy top disease. Cotton blue disease affected leaves tend to be smaller, thick, more brittle and leathery and have an intense green to bluish colour with yellow veins. Reddening of stem petioles and leaf veins can occur in some infections. Leaf edges tend to roll downwards and under and plants become stunted due to a shortening of the branch internodes and produce many

Exotic threats BIOSECURITY

branches, giving a bunchy zig-zag stem habit. Symptoms are more obvious in plants infected at an early age and stunting is more pronounced. Infected plants also produce smaller bolls and boll shed may occur. Single infected plants can be overlooked if overgrown by nearby healthy plants.


Bacterial blight

Xanthomonas Axonopodis or X. Campestris PV Mavacearum – exotic strains

Although strains of bacterial blight are already present in Australia, they are no longer a problem due to varietal resistance. Exotic strains (races) occur, however, that are 'hypervirulent' and, if established in Australia, would cause large yield losses. The disease is seed borne allowing easy dispersal and introduction of new races into new areas. Bacterial blight is spread by high temperature, humidity and rainfall.

The initial symptoms include the undersides of leaves have angular water soaked lesions. Lesions dry and darken with age then leaves are shed. Black lesions spread along stem. Bolls often infected at base or tip. Lesions dry out and prevent the boll opening. The pathogen is capable of symptomless transfer and therefore could be undetected through quarantine. Symptoms include yellowing or bronzing of leaves, leaves wilt and die; dead leaves usually remain on plant. At this stage, roots are dead and surface is covered with network of tan fungal strands.

Best practices for aerial and ground spray applications to cotton

Bill Gordon, Bill Gordon Consulting Pty Ltd.

Adapted from earlier versions by

Andrew Hewitt, Centre for Pesticide Application and Safety, University of Queensland

Peter Hughes, DEEDI Qld

Tracey Levin, CRDC

Achieving the best outcome from spray application requires the careful consideration of many factors. The aim of spray application is to transfer active ingredients through the atmosphere to the target in an effective manner with minimal off-target losses. Application technique needs to be matched to the target and weather conditions. Movement of spray beyond the target area is undesirable as it represents wastage of product and exposure of non-target sensitive areas to potentially damaging materials. This chapter provides guidance on factors to be considered in optimizing spray application. New technologies and information are continually becoming available, so this is meant as a summary guide only. Readers should consult additional information where available.

Planning

The development of a comprehensive pesticide application management plan (PAMP) is an important part of the Best

Spraying?

Be aware — take care

Cotton crops are sensitive to Herbicide spray drift. To help prevent this problem happening this summer, there is a website to identify cotton fields in your area.

Any farmer planning to use herbicides can log on to view susceptible cotton fields which could be at risk.

CottonMap is seasonally available between 1 September and 30 April and can be found at www.cottonmap.com.au

Also remember:

Follow label directions—It allegal not to

Use a "Coarse" spray quality or greater when applying Group I herbicides

Don't spray during inappropriate weather conditions

Be particularly valient of variable conditions at right

Notify cotton neighbours of your intention to spray

CottonMap

CottonMap

Management Practice (BMP) program in cotton. The PAMP for farming enterprises should be completed prior to the season and should cover;

- Farm layout;
- Identification of sensitive areas, potential hazards and awareness zones;
- Communications procedures;
- Pesticide Management Guidelines; and,
- Accident and emergency procedures.

Having a PAMP in place helps to ensure that everyone involved in pesticide application has a clear understanding of their responsibilities.

Meet your legal obligations

Always read and follow the label when handling and applying chemicals and be aware of federal and state regulations for chemical application. Staff responsible for handling and applying pesticides must be qualified according to relevant state and federal requirements. There may also be workplace health and safety requirements related to storage and use of hazardous substances, which require risk assessments to be completed, in addition to maintaining a manifest and Safety Data Sheets for those substances deemed to be hazardous.

Users are not absolved from compliance with the directions on the label or the conditions of the permit by reason of any statement made or not made in this publication.

Communication and neighbour notification

Prior to spray application and product selection check the proximity of susceptible crops and sensitive areas such as houses, schools, waterways and riverbanks.

It is good practice to notify neighbours of your spray intentions, regardless of label requirements. By doing this, sensitive crops or areas that you may be aware of can be accounted for.

Open communications with neighbours is critical due to Roundup Ready cotton. Roundup Ready herbicide drift onto fields of non-Roundup Ready cotton can result in serious yield losses.

Cotton is extremely sensitive to phenoxy via off target application. To assist with reducing drift it is essential that you identify your cotton fields on the cottonmap website. This map will be used by spray contractors, resellers, agronomist and neighbours to identify crops.

Weather conditions

Since sprays are released into the atmosphere, weather conditions at the time of application will have an effect on spray transport and deposition. Monitor weather conditions regularly during spray applications (this means continual visual observations and actual measurement at least every 20-30 minutes).

Every grower should use an electronic weather meter to measure meteorological data at the site of application. This can be done with handheld equipment (e.g. Kestrel 3000, 3500, 4000 or equivalent). Alternatively there are on board weather stations available utilising GPS input to provide weather information and logging whilst spraying (such as the Topcon or Watchdog systems).

When applying chemicals, precision is crucial.

That's why we offer a complete line of precision spraying solutions to make every drop count.

Start with our GS3 Display and Starfire™ 3000 Receiver for a guidance and field documentation system capable of growing with you.

Couple this with a GreenStar™ Rate Controller and you'll have the ability to control your non-John Deere pull behind sprayer's spray-rate functions including dual boom; document pesticide application rates and apply map based prescriptions.

Upgrade your system with Swath Control Pro™ automatic section control to turn your sprayer's boom sections on and off based on a GPS coverage map.

Together these elements deliver an outstanding precision spraying solution. Apply your chemical when and where it counts...Talk to your John Deere dealer today.

Best practice spraying

Growers can also subscribe to websites that provide forecasts of conditions for spraying up to 10 days in advance. These sites evaluate all of the following factors to produce tables indicating times that would be suitable for spraying. You can access the websites at either Spraywisedecisions.com.au or Syngenta.com. au for more information.

Temperature and humidity

Higher ambient air temperatures and lower relative humidity conditions increase evaporation rates. Since droplet size of water-based sprays decreases rapidly with higher evaporation rates, drift tends to increase. Studies have shown that an increase in air temperature from 10°C to 20°C may require an increase in buffer zone size from just a few percent to over 100%, depending on the accompanying wind speed.

Water-based sprays should not be applied under conditions of high temperature and low relative humidity (RH). Spraying is best conducted when the delta T (the difference between the wet bulb and dry bulb) is more than 2 and less than 10°C. For example, spraying can be carried out if the temperature is;

- 20°C and RH ≥24%
- 25°C and RH ≥33%
- 30°C and RH ≥40%
- 35°C and RH ≥45%

When using coarse sprays at high water volume rates, evaporation may be less significant, which may allow some applications to continue into marginal delta T conditions (where soil moisture exists, and the targets are not in a stressed condition).

Never start a spraying operation when the delta T is above 10–12.

What is a surface temperature inversion?

Surface Temperature Inversions are the most hazardous atmospheric conditions for spray applications, especially when combined with high humidity. An inversion exists when the air temperature increases with altitude instead of decreasing. Inversions usually occur on clear, calm nights and persist well into the morning, until the ground heats sufficiently to lift the inversion, or when sufficient wind causes the air to mix, breaking the inversion layer (see Figure 12).

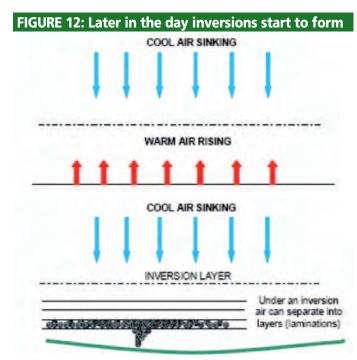
High humidity increases the drift hazard under inversion conditions as it extends the life of small droplets (less than 100 microns). Droplets suspended within an inversion tend to travel parallel to the ground, and cool air drains to the lowest point in the landscape, carrying with it chemical that remains suspended. Windy or turbulent conditions help to reduce the likelihood of surface temperature inversions forming. Smoke generators

Smoke	Condition	Notes	Spray
	NEUTRAL (e.g. morning)	Cool breeze (4–15 km/h) Optimum spray conditions.	~
•	UNSTABLE (e.g. afternoon)	Hot. Low windspeed, thermal activity. Risk of upward movement of fine droplets.	X
	INVERSION (e.g. night)	Low windspeed. Hot during day. Risk of significant off-target deposition of fine droplets.	×
	STABLE (e.g. dusk)	Low windspeed. Risk of off-target spray deposition.	×

can be used to detect inversion conditions. Under an inversion smoke will not continue to rise, but will drift along at a constant height under the inversion 'blanket'.

Do not spray during surface temperature inversion conditions. Thermals are updrafts during the heat of the day cause rapidly shifting wind directions.

Also avoid spraying in these conditions.


Wind speed at night and inversions

Still conditions or very light and variable winds (typically less than 4 km/h) greatly increase the risk of spray movement away from the target and so should be avoided for spray applications. Such conditions may indicate local surface temperature inversion conditions. Spray Drift that occurs under these conditions may travel long distances, often damaging large areas, with very uniform symptoms.

Figure 11 below shows the effect of atmospheric stability on the dispersion of sprays in the atmosphere. The behaviour of smoke or dust under various stability conditions may assist with selection of the preferred spraying conditions. Neutral atmospheric stability conditions (e.g. morning with a light cool breeze) are best for most applications.

Wind speed

Wind speed affects the distance that a droplet will travel before deposition, impaction or evaporation. Wind speeds of 3–15

FALLOW GROUND

HEAVY STUBBLE

IN CROP SITUATIONS

Best practice spraying

km/h are recommended (8–10 km/h are ideal) for spraying with a ground rig. Labels usually require wind speed to be measured at the site of application.

Higher wind speeds usually pose greater risk that product will evaporate quicker or be blown off target. At wind speeds of 11–15 km/h, use low drift nozzles or higher application volumes. Avoid spraying when wind speeds exceed 4.5m/s or 16 km/h. Scandinavian studies have suggested that an increase in wind speed from \sim 5 km/h to \sim 16 km/h at an air temperature of 10°C will require a 25% increase in buffer zone size for herbicide applications.

Buffers

Vegetative buffers tend to be more effective than bare ground in intercepting spray that moves off target during spray application. Good buffers can reduce drift by as much as 60 to 90 per cent.

Farm planning should consider where the protection of sensitive areas can be improved by enhancing vegetative buffers. Effective buffers are comprised of a mixture of tree and shrub species with foliage all the way to the ground. The planting arrangement and density allows for air to partly flow through the barrier. Barriers without airflow act like impermeable walls. The wind containing the spray drift is deflected up and over the top of the barrier which increases the effective release height and increases the far-field drift potential. Do not position barriers where airflow will be obstructed by adjacent objects such as turkey's nests.

The optimum height for a buffer is 1.5 times the release height of the spray. Trees and shrubs are able to act as an effective barrier for ground applied sprays from early in their development. Most guidelines suggest that the optimum width of the barrier is 20 m with a 10 m maintenance strip on either side.

Adopting best spray practice

Summary of factors that influence spray drift and best practice

Setting appropriate spray release height

The amount of chemical left in the air may increase by up to 10 times as nozzle height increases from 50 cm above the target to 1 m above the target. It is important to set the height of the boom at the minimum practical height to achieve the correct spray pattern for the nozzles. Vertical movement of the spray boom should be minimised. Limit vertical movement by tuning the boom suspension and matching travel speed to release height. Alternatively consider fitting auto boom height.

Auto boom height devices use ultrasonic sensors to detect the height of the boom above the target. These adjust the boom hydraulically to maintain the nozzles at a constant height above the target. Generally these systems will require a machine with good hydraulic capacity, but allow the machine to maintain boom height at travel speeds up to 28 km/h.

Travel speed

Air velocity affects deposition of droplets onto the target. Increased operating speeds can cause spray to be diverted back into upward wind currents and vortexes behind the

spray boom. Special care should be taken when using high speed, high clearance sprayers and some "floaters" whose tires may become more like fans when driven at high speeds. Small droplets can become trapped in these air patterns and contribute to drift. Speeds above 15 km/h have been shown to increase the risk of drift for boom spraying and speeds above 10 km/h increase the risk from shielded sprayers.

Setting pressure range

Only ever operate nozzles within the pressure range recommended by the manufacturer. Higher or lower than recommended pressures changes the droplet spectrum and the spray pattern, affecting both the risk of drift and the efficacy of the spray application.

Be aware that many air induction nozzles will require slightly more pressure than the minimum indicated on the

Record keeping

It is always good practice to maintain accurate records of every spray application made on your property. These records provide a valuable management tool for comparing spray applications and identifying factors that may have contributed when an application does not perform as well as expected. Accurate records can also assist in identifying issues such as the onset of resistance and sensitivity of the target to particular products or tank mixes.

State Based Legislation – Requirements for Record Keeping Under the Pesticides Regulations of the NSW Pesticides Act, when spraying you must record the weather and relevant spray details. An example form is presented on page 151.

Spray log books can be purchased from DEEDI Qld Toowomba Client Services Centre 0746881200 or DEEDI Qld Dalby – Phone 07 4669 0800. Spray log books are also available from DPI NSW, Yanco Phone 1800 138 351.

Spraywise decisions log books are available through Croplands dealers Federal Legislation – Label Requirements for Record Keeping

It may also be a requirement of many product labels to maintain an accurate spray record. Where the label requires a record to be made this detail must be recorded in addition to any state based requirements for record keeping.

Labels may require that a spray record be made within 24 hours of the application occurring and that the record retained for a minimum of two years:

The details that must be recorded within the federal requirements for a spray record will be stated on the label, but will typically include the following:

- 1. Date with start and finish times of application;
- 2. Location address and paddock/s sprayed;
- 3. Full name of the product;
- 4. Amount of product used per hectare and the number of hectares applied to;
- 5. Crop/situation and weed/pest;
- 6. Wind speed and Direction during application;
- 7. Air temperature and relative humidity during application;
- 8. Nozzle brand, type, spray angle, nozzle capacity and system pressure measured during application; and,
- 9. Name and address of person applying this product.

(Additional record details may be required by the state or territory where this product is used.)

Hence it will be important to ensure that the record keeping system or log book you use allows you to record all of the above details to ensure you meet your legislative requirements.

Best practice spraying

manufacturers spray chart. Always assess the spray pattern at various pressures, to determine an appropriate minimum operating pressure.

Where automatic rate controllers are fitted to the machine, carefully consider the true range of speeds the machine is likely to operate, from the slowest field to the fastest field. Identify what the pressure at the nozzle will be at your lowest speed and your fastest speed and identify a nozzle that will produce the required spray quality across that range of speeds.

Operating at recommended pressures can also minimise wear and tear on nozzles.

Selecting water volume

Always follow label recommendations for water volumes for application. Typically in crop applications to cotton will require application volumes of 100 L/sprayed hectare or more.

Whereas, for fallow spraying with translocated herbicides (such as glyphosate and the phenoxys) equivalent efficacy has been shown for medium, coarse and even extremely coarse spray qualities at 50 L/ha. Equivalent efficacy in fallow spraying situations has also been shown at 70 L/ha and greater for products with minimal translocation, such as Spray Seed. When using larger than a medium spray quality for translocated products, increasing water rate does not necessarily increase efficacy, and in some situations may actually reduce performance in the field.

Higher water rates with fully translocated products can reduce efficacy when a marginal rate of product is used, when water quality may be marginal or where diluting the adjuvants included in the product reduces the products performance.

Nozzle selection

Spray nozzles produce a range of droplet sizes called the droplet size spectrum. Nozzle manufacturers now use internationally recognised classifications for droplet size spectrums referred to as the Spray Quality. These are Very fine, Fine, Medium, Coarse, Very coarse and Extremely coarse.

The APVMA has released a document which specifies the standards it will accept for the definition of spray quality, which includes the ASAE standard, the BCPC standard, and a coarse spray quality definition for aerial application.

Each time you move from one classification to the next coarser classification you approximately half the driftable fraction (eg. from medium to coarse, or from coarse to very coarse). Hence it is always advisable to use the largest spray quality classification that will provide acceptable efficacy.

Interpreting information about spray nozzles

Nozzle manufacturers provide information on the droplet size spectrum performance of nozzles and atomizers under specific operating conditions. Most nozzle catalogues only provide such information for applications of water under ground spraying conditions.

Real tank mixes may produce different spectrums than those suggested in nozzle catalogues. Tank mixes with lower surface tension and viscosity than water will tend to favour greater production of smaller droplets.

In aerial applications sprays tend to be much finer than the ground-based nozzle catalogue data would suggest. This is primarily due to air shear. Models are available for some nozzles and atomizers to indicate the droplet size classification under aerial conditions.

A comprehensive set of such models and tables of droplet size information are available from the United States Dept. of Agriculture at http://apmru.usda.gov/downloads/downloads.htm and, for aerially-applied 2,4-D sprays, from wind tunnel droplet size research from www.aerialag.com.au.

Maintenance and hygiene

Calibration - replace worn nozzles

The output of each nozzle should be checked pre-season and regularly during the season. Nozzles that vary more than 10% from the manufacturer's specifications should be replaced. Regularly check wheel sensors and flow meters for accuracy, check pressure across the boom for evenness and monitor total volumes against areas on your GPS logs to indicate when things may have changed since your last calibration.

Decontamination

Application equipment that has been used to apply herbicides should be thoroughly decontaminated before being used to apply any product to a susceptible crop. Strictly follow the method of decontamination recommended on the label. No matter how much time is spent decontaminating the equipment there is always a risk of herbicides residues causing a problem.

Tank mix considerations

Always follow the manufacturers' recommendations for mixing. Where multiple product tank mixes and adjuvants are added to the one tank, incorrect mixing order can reduce the efficacy of those products.

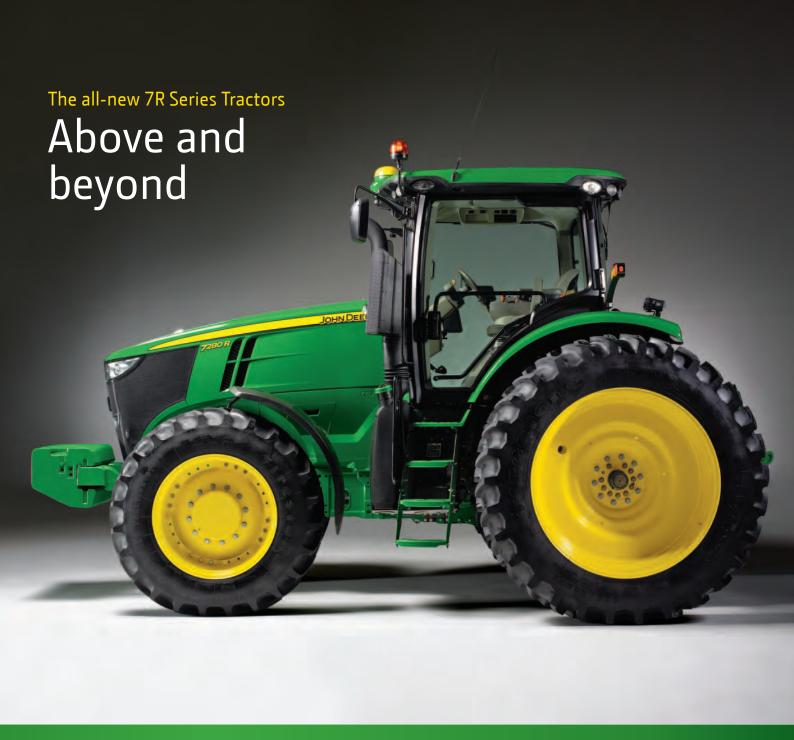
Using adjuvants to increase droplet size

More can be done to manipulate droplet size with nozzle selection, than with the addition of an adjuvant.

Many adjuvants, especially non-ionic wetters (wetter 1000 products) increase the amount of drift. Whereas some adjuvants can increase droplet size, care should be taken in assuring that there is a decrease in small driftable droplets with diameter below $100-200\mu m$, and not just an increase in the average or volume median diameter of the spray. When considering adjuvants, compatibility with the tank mix and spraying system should also be considered, since some adjuvants do not perform as well with some combinations of other factors. For example, many polymers cause a decrease in spray angle from cone nozzles which may adversely affect spray formation and coverage.

Emulsion-based adjuvants often perform better for reduction in small droplets than solution-based adjuvants for the same surface tension. However, actual performance is specific to the conditions.

Tank mix temperature


Recent research has shown that the temperature of the tank mix relative to the air may have an effect on the droplet size spectrum produced at atomization. Often a temperature difference where the liquid is greater than 6° C warmer than the ambient air can reduce the small droplet proportion of the spray.

Product types

The selection of product may affect the tank mix physical properties, which can affect droplet size and likelihood of off-target losses.

The impact of a given amount of drift off target will depend on the product's toxicity to what is present in the affected areas.

Presenting the all-new John Deere 7R Series Tractors.

Built with an all-new chassis, all-new engine, all-new transmission options, and an all-new suspended cab. All so you can ride in comfort while getting more done every day thanks to their unprecedented versatility plus increased horsepower, hydraulic flow, and hitch-lift capacity. Then there's the ability to go with Group 49 tyres, a sixth rear SCV, and a front PTO and hitch. Yes, their impressive design sets them above all others. And their intelligent performance can help you grow beyond all expectations.

The all-new 7R Series Tractors with 149 kW (200 hp) to 208 kW (280 hp) engine hp* 123 kW (165 hp) to 171 kW (230 hp) PTO. They're above and beyond.

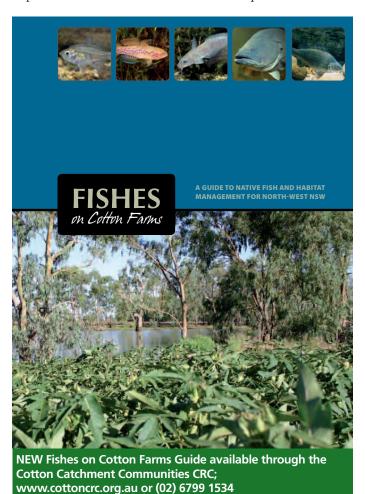
Get to know the 7R Series at JohnDeere.com.au

Best practice spraying

Alternative pest control methods (e.g. cultural, mechanical, biological) may allow pesticides to be avoided or used at lower rates in conjunction with other methods. Where chemicals are used, preference should be given to products which offer the lowest effects on non-target organisms and the environment. To compare the relative toxicities of insecticides to non-target insect species such as beneficials and bees, refer to Table 3, pages 8–9.

Types of drift

Sprayed pesticides can drift as droplets and particles or as vapours.


Droplet and particle drift

Droplet and particle drift is a common cause of off-target damage from pesticides. It is particularly obvious where herbicides drift onto susceptible crops.

It occurs when any form of pesticide is applied in unsuitable weather conditions and/or with inappropriate application parameters. Water in the spray droplets evaporates resulting in finer droplets and particles of herbicide. As the size of the droplet declines, so too does their rate of fall towards the ground. Smaller droplets remain airborne longer and hence are susceptible to further evaporation and drift away from the intended target. Herbicide particle drift damage to susceptible crops has been reported up to 30 km from the spray source. Droplet and particle drift is the easiest form of drift to prevent. Under good spraying conditions, droplets are carried down by air turbulence and gravity to collect on the intended plant surfaces.

Vapour drift

Vapour drift is the movement of volatile components of

herbicides in air currents during or after application. Volatility refers to the likelihood that the herbicide will turn into a gas. Vapours may arise directly from spray or from the target surface after droplet deposition. Volatilisation from the target surface can occur hours or days after application. The risk of vapour drift can be avoided by choosing active ingredients with low volatility. The ester forms of 2,4-D and MCPA have high volatility, while the amine and salt forms have low volatility. Actives with low volatility are still susceptible to droplet and particle drift. Some examples of vapour drift risk from some different products are shown in the table on page 154.

New approaches to chemical labels

The APVMA are applying a spray drift risk assessment to all new registered products, and progressively to those existing products that have been subject to review. To access or download the APVMA document that explains this approach, check the APVMA website apvma.gov.au

The new labels will include some new requirements, such as:

Mandatory spray qualities

Some labels already have a mandatory spray qualities, such as those on products containing 2,4-D, which state... 'spray quality must not be smaller than a coarse to very coarse spray quality according to the ASAE Standard S-572'.

New labels will also have a spray quality requirement, typically stating either medium spray quality or larger, or coarse spray quality or larger. This will be linked to a wind speed range and other measures for mitigating spray drift risk.

Mandatory wind speed range

Some labels already have a mandatory wind speed range, such as those on products containing 2,4-D, which states... 'wind speeds must be above 3 km/h and less than 15 km/h as measured at the site of application.'

This approach will be applied to all new labels, with the wind speed range varying depending on the level of risk associated with each product, and the method of application. In many cases the wind speed range will also be linked to the size of a no-spray zone. In the majority of labels the wind speed range will be above 3 km/h and less than 15 km/h or above 3 km/h and less than 20 km/h, depending on the level of risk associated with that product

No spray zones

Some product labels may refer to a mandatory no spray zone. This is the downwind distance between the sprayed area and a sensitive area. The NO SPRAY ZONE cannot be sprayed when the wind is towards the sensitive area (which may be a residence, public area, water body, pasture, terrestrial vegetation or another susceptible crop), ie. a label may include several NO SPRAY ZONE tables. The distance required for the NO SPRAY ZONE may differ for the various types of sensitive areas. Always check the label to see of a no spray zone is required, and how wide the no spray zone has to be for the product you wish to apply

Additional considerations for aerial applications

Boom length

The forces that provide lift and flight of aircraft also produce wake and vortex effects of the air into which spray droplets are released. If droplets become entrained in these airflows, their trajectory and path can change. To minimise this effect, boom length should not exceed 65 to 75% of the wingspan.

Best practice spraying

The strength of vortices tends to increase when a slower flight speed or greater weight is used and when the lift increases, for example when the aircraft climbs at the end of a flight line. Therefore, spray should not be applied when the aircraft is climbing, but only when the aircraft is level over the target. Also, if helicopters are flown very slowly, the airflow behaviour can cause droplets to be carried up by the rotor vortices, with an increase in spray drift potential.

Air shear

The production of small droplets that may be more prone to drift can be reduced by minimizing air shear at the nozzle tip where the liquid meets the airblast from the aircraft motion. Reducing flight speed (e.g. using slower helicopters rather than higher speed fixed wing aircraft) can reduce this shear, but may affect productivity rates and optimal operation. Reducing the nozzle angle is an effective way to reduce air shear. In the case of deflector nozzles, the nozzle angle and the deflector angle can be reduced to provide minimal air shear conditions. The lowest air shear occurs for nozzle angles which are 0° straight back.

Pressure

The relative velocity of the air and liquid is important in affecting droplet size. For most nozzles, lower liquid pressure produces coarser sprays, within the optimal operating range for the nozzle. However, with very narrow angle sprays such as those from solid stream and narrow angle flat fan nozzles, higher pressure generally produces coarser sprays. Consult nozzle manufacturer information for specific recommendations on pressure range settings for optimal droplet size and application criteria.

Rotary atomizers

Some rotary atomizer manufacturers provide models for predicting droplet size with their equipment based on operational parameters such as rotation rate, flight speed and liquid flow rate for specific product types.

Coarser droplets can be produced by increasing the drag on the atomiser to lower the rotation rate. Using windmill bladedriven atomizers allow selection of rotation rate through changing the blade angle. Droplet size also tends to increase with higher flow rates. There may be a change in the mode of atomization from direct droplet through ligament and sheet breakup as flow rate increases, each of which tend to produce progressively coarser sprays.

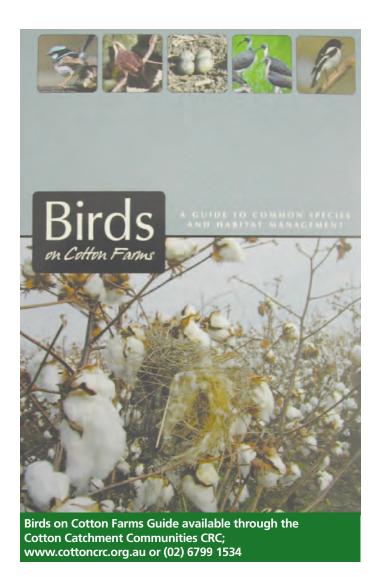
Specialised aerial equipment

Some spray equipment allows in-flight optimization of application conditions. For example,

- Booms can sometimes be lowered after take-off, allowing spray release height to be reduced with lower drift potential;
- Chambers are being developed for reversing the venturi effect where the nozzle can be positioned in a relatively lower airstream velocity reducing the number of small droplets;
- Wing tip modification devices can reduce vortices and modify wake effects to prevent spray from drifting, but under some circumstances could also affect aircraft handling and airframe lifetimes; and,
- Electrostatic spraying systems may help with droplet wraparound onto lower leaf surfaces, but drift reduction will ultimately depend more on droplet size than forces such as electrostatic charge.

Further information:

"Spray Drift Management Principles, Strategies and Supporting Information", www.publish.csiro.au/Books/download.cfm?ID=3452.


SPRAYpak – Cotton Growers' Spray Application Handbook, 2nd Edition, available from CRDC.

Spraywise – Broadacre Application Guide – Available through Croplands Distributors.

The spray drift model 'AgDRIFT', is available for free download from www.agdrift.com. Fact sheets on droplet size classification, and drift management in aerial and ground applications are also available at this website.

For more information about using vegetative barriers in spray drift management, see the Queensland guidelines: Anon (1997) Planning Guidelines: Separating Agricultural and Residential Land Uses. Dept of Natural Resources, Queensland and Dept of Local Government and Planning, Queensland. DNRQ 97088. Available for free download at www.nrm.qld. gov.au/land/planning/pdf/public/plan_guide.pdf.

Comprehensive information about droplet spectrums of nozzles under aerial application conditions is available from the United States Dept. of Agriculture at http://apmru.usda.gov/downloads/downloads.htm. For aerially-applied 2,4-D sprays, from wind tunnel research, see www.aerialag.com.au.

Legal responsibilities in applying pesticides

Mark Scott, DPI NSW Lisa Dixon, ClemClear

Pesticides Act

The Pesticides Act 1999 is the primary legislative instrument controlling the use of pesticides in NSW and is administered by the Office of Environment and Heritage (OEH). The underlying principle of the Pesticides Act is that pesticides must only be used for the purpose described on the product label and all the instructions on the label must be followed. Consequently, all label directions must be read by or explained to the user prior to each use of the pesticide.

All pesticide users should take reasonable care to protect their own health and the health of others when using a pesticide. They should also make every reasonable attempt to prevent damage occurring from the use of a pesticide, such as off-target drift onto sensitive areas or harm to endangered and protected species.

A regulation was gazetted in 2009 requiring all commercial pesticide users, i.e. all farmers and spray contractors, to keep records of their pesticide application

While no set form is required for records they must include the following:

- Full product name,
- Description of the crop or situation,
- Rate of application and quantity applied,
- Description of the equipment used,
- Address of the property, identification of the area treated and order of paddocks treated,
- Date and time of the application (including start and finish),
- Name, address, and contact details of the applicator and of the employer or owner if an employee or contractor is the applicator,
- Estimated wind speed and direction (including any significant changes during application),
- Other weather conditions specified on label as being relevant (e.g. temperature, rainfall, relative humidity).

An example form that captures all the information required by the Pesticides Regulation 2009 is provided on the following page. Notes on how to fill it in, can be downloaded from the DPI NSW website. A self-carbonating record book is available for purchase through the DEEDI Qld Dalby and Toowoomba offices and through the DPI NSW SMARTtrain National Support Centre at Yanco.

Records must be made within 24 hours of application, be made in legible English, and kept for 3 years.

The Pesticides Regulation 2009 also requires all commercial pesticide users to be trained in pesticide application.

The training of aerial applicators, pest control operators and fumigators is recognised as satisfying the requirements of the regulation. Apart from these groups, all commercial users must have a prescribed qualification. Only domestic use, such as home gardens, is excluded, provided the pesticide is a specific domestic/home garden product. Covered by the regulation is pest control by/on:

- Public authorities, e.g. State Rail,
- Golf courses, sporting fields and bowling greens,
- Agricultural, horticultural, aquacultural and forestry operations,
- Businesses, educational institutions, and hospitals. The minimum prescribed training qualification will be the AQF2 unit of competency, 'Apply chemicals under supervision', although owner-applicators are encouraged to train and be assessed in the two higher AQF3 competencies, 'Prepare and apply chemicals' and 'Transport, handle and store chemicals'. Growers are recommended to undertake the SMARTtrain course, Chemical Application, or the standard ChemCert course, both of which cover the higher AQF3 competencies. For growers with literacy and/or numeracy problems, the lower level AQF2 competency will provide a minimum qualification that satisfies the Regulation.

In Queensland the Chemical Usage (Agricultural and Veterinary) Control Act 1988 (Chem Usage Act) imposes requirements on all users of pesticides similar to those under the NSW Pesticides Act 1999. The Chemical Usage Act requires users to only use agricultural chemical products registered for the particular purpose. Also all users must apply agricultural chemical products according to product label instructions, including any use instructions or restraints that may be listed that relate to wind speed and offtarget drift restriction controls. There are heavy penalties imposed on anyone found to have breached the Chemical Usage Act by failing to observe label instructions.

Under the Agricultural Chemicals Distribution Control Act 1966 (ACDC Act) aerial distribution contractors in the business of aerial distribution (application) of agricultural chemicals and ground distribution contractors in the business of ground distribution of herbicides must be licensed. In addition agricultural pilots and ground commercial operators working for or engaged by these contractors must undergo prescribed training and also be licensed. There is no requirement for growers applying agricultural chemicals on their own land to undertake training or to hold a licence. However, Queensland growers are strongly encouraged to undergo some form of vocational training or further training with Chemcert or a registered training organisation such as SMARTtrain or TAFE so their skills and knowledge in application technology and handling, storing and transporting chemicals are maintained and kept up to date.

In Queensland cotton growers are not required under legislation to keep records of spraying activities they carry out themselves on their own property unless a product label has an instruction which requires them to do so. This differs to the situation in NSW. However it is considered good farming management practice to keep records and therefore all Queensland growers are strongly encouraged to keep records of all their chemical applications along the same lines as NSW growers are required to do so by law.

Licensed aerial and ground distribution contractors are required to make records of all their spraying activities and keep these for a minimum of 2 years. The required records are set out under section 26 of the ACDC Act.

Additional advice on legal responsibilities in applying pesticides in Qld. Geoff Cowles OAM, Biosecurity Queensland, a service of DEEDI Qld, Qld.

PESTICIDE APPLICATION RECORD SHEET

Location, Applicator, Date of Application								
Property/holding (residenti	al address):					Date:	
Applicator's full name:					Owner (if not applicator):			
Address				Address				
				Phone:			Phone:	
Mobile:	Fax:			Email:	Mobile:	Fax:	Email:	
Sensitive areas (including distances, buffer				Comments (including risk control measures for sensitive areas):				
		Treated	E	-				
		Area		-				
		S						
Host/Pest								
Paddock number/name:				Paddock area:		Order of paddocks sprayed:	No of hectares sprayed:	
Crop/situation:					Type of animals:	, , ,		
Crop/pasture variety:					Age/growth stage			
Growth Stage:					Mob/paddock/shed:			
Pest/disease/weed:			Animals – number treated:					
			Pest density/incidence: ☐ Heavy ☐ Medium ☐ Light					
Application Data								
Full label product name:			Rate/dose:	dose: Water rate L/ha:				
Permit No: Expiry date: Additives/wetters:								
Total L or kg:				WHP:	ESI:	Date suitable for sale:	Date suitable for sale:	
Equipment type: Nozzle brand and type (ii			Nozzle brand and type (in	cl capacity):	capacity): Nozzle angle: Pressure:			
Date last calibrated:				Water quality (pH or desc	ription):			
Weather								
□ Showers □ Overcast □ Light cloud □ Clear sky								
Rainfall (24 hours before and after) Before: mm During: mm After: mm								
Time (show time in this column	Temp	perature '	°C	Relative humidity (%)	Wind speed	Direction	Variability (e.g. gusting)	
Start:								
Finish:								
Comments:								
* When using herbicides in mixtur	es with fung	icides and	insecticide	es, an ESI may apply to the non-he	rbicide component of the mixture	е.		

Legal responsibilities

Hazardous Substances and Dangerous Goods Legislation

Many registered pesticides are classified as hazardous substances and most of those that are not pose some risk to the health of those who use them or are exposed to them.

The Occupational Health and Safety Act 2000, and the Hazardous Substances section of the Occupational Health and Safety Regulation 2001, detail legal requirements of suppliers, employers and employees in the workplace for hazardous substances management. The Act and accompanying Regulation are intended to protect workers from both the short and long-term health effects of exposure to hazardous substances and to improve current health and safety practices by:

- Provision of health and safety information to workers (including a list or register of all hazardous substances and an MSDS (Material Safety Data Sheet) for each hazardous substance),
- Consultation with workers,
- · Training of workers,
- Assessment of the risks arising from hazardous substances exposure,
- · Control of the risks, and
- Recording of the risk assessment and control measures implemented, training of both those applying and exposed to hazardous substances, and health surveillance (if warranted by the risk assessment in respect of organophosphates).

Both storage and use are covered by the OH&S legislation. Records of training and risk assessments have to be kept for 5 years.

Dangerous Goods legislation has been revised to bring it into line with hazardous substances legislation. The new requirements came into force after a phase-in period ending September 1, 2006. The main requirements include;

- Provision of MSDSs;
- · Carrying out and documenting risk assessments; and,
- Keeping a register of Dangerous Goods.

All these requirements already apply to hazardous substances. In practice, the only change will be to add to existing management and recording and record systems any Dangerous Goods that are not also hazardous substances.

Storage limits have changed. Premises storing large quantities require placarding of both the storage shed and the entrances to the premises. If very large quantities are stored, which would be rare on-farm, a manifest, site plan and written emergency plan are required. Consult your local WorkCover office for advice. Farm chemicals are registered pesticides, and many are either hazardous substances or Dangerous Goods or both. As different legislation applies to each category, farmers must ensure their pesticide use complies with all relevant legislation.

WorkCover NSW's *Code of practice for the safe use and storage of chemicals (including pesticides and herbicides)* in agriculture is an approved industry code of practice and provides practical guidance for farm chemical users to comply with the legislation. This has recently been revised to reflect the new Dangerous Goods requirements. Copies can be obtained from your local WorkCover office, by download from the WorkCover website – www.workcover.nsw.gov.au – or by phoning 1300 799 003.

The cotton industry's guidelines for handling, storage and application of pesticides can be found in Part 1 and 2 of the *Australian Cotton Industry Best Management Practices Manual.*

Pesticides and The Environment

The cotton industry's guidelines for minimising risk to the environment is another component of myBMP.

Most insecticides are toxic to aquatic organisms, bees and birds. Fungicides and herbicides are relatively safe to bees in terms of their active ingredients, but their carriers and surfactants may be toxic. The risks that a particular product poses to the environment are reflected in statements on the label under headings like 'Protecting wildlife, fish, crustacea and the environment'.

Protecting bees

The cotton growing environment is a high risk environment for bees. Bees are particularly susceptible to many of the insecticides used on cotton farms, such as abamectin, fipronil, indoxacarb, pyrethroids and profenofos. The productivity of hives can be damaged if bees or the hives are contaminated. Insecticides that are particularly toxic to bees are identified as such with the following special statement on the label;

Dangerous to bees. DO NOT spray any plants in flower while bees are foraging.

The relative toxicities of cotton insecticides to honeybees are listed in Table 3 on pages 8–9.

Table 3 ranks the acute toxicities of products to bees based on LD_{50} information. The residual toxicity of insecticides, that is, the amount of time the product remains toxic to bees after the time of application, should also be considered when information is available. For the majority of insecticides used in cotton the residual toxicities are unknown. Table 43 summarises the currently available information.

Bees are generally active between 7:00 am and 4:00 pm and most bees forage within a 2 to 4 km radius of their hive. They may travel up to 7 km away in search of pollen and nectar, though only when nearby pollen and nectar sources are in decline or are of poor quality. Bees collect nectar from extra-floral nectaries (eg under leaves) as well as from cotton flowers

Protect bees when using Regent Insecticide

The Regent Insecticide label states:

'Dangerous to bees. DO NOT apply where bees from managed hives are known to be foraging, and crops, weeds or cover crops are in flower at the time of spraying, or are expected to flower within 28 days (7 days for pastures and sorghum).

Before spraying, notify beekeepers to move hives to a safe location with an untreated source of nectar, if there is any potential for managed bees to be affected by the spray or spray drift. If an area has been sprayed inadvertently, in which the crop, weeds or cover crop were in flower or subsequently came into flower, notify beekeepers in order to keep managed bees out of the area for at least 28 days (7 days for pastures and sorghum) from the time of spraying. Where the owner of managed hives in the vacinity of a crop to be sprayed is not known, contact your State Department of Primary Industries/Agriculture, citing the registration number, for assistance in contacting the owner.'

Legal responsibilities

SPRAY APPLICATION

so they may forage in cotton crops before, during and after flowering. As well as bees foraging in cotton crops, damage may occur to bees when pesticides drift over hives or over neighbouring vegetation that is being foraged by bees eg. coolibah.

Coolibah trees (Eucalyptus microtheca) are a primary source of nectar and pollen for honey bees. These trees grow on the black soil plains along many of the river courses in the cotton growing areas. Budding and flowering occurs in response to good spring rains. In northem NSW the buds appear in November and the trees begin to flower mid-late December finishing about the end of January, budding and flowering times vary by a few weeks in both the southern and central Qld areas. When heavy budding occurs beekeepers often move large numbers of hives into cotton growing areas for honey production.

With good communication and good will, it is possible for apiarists and cotton growers to work together to minimise risks to bees, as both the honey industry and cotton industry are important to regional development.

The pesticide risk to bees can be reduced by:

- Applying pesticides toxic to bees in the evening when bees are not foraging;
- Notifying the apiarist when beehives are in the vicinity of crops to be sprayed to allow removal of the hives before spraying. Beekeepers require as much notice possible, preferably 48 hours, to move an apiary;
- Where possible, using EC and granular formulations in preference to wettable powders which are particularly hazardous to bees. Micro-encapsulated formulations such as that used for lambda-cyhalothrin are particularly hazardous to bees because of their persistence in the environment and because bees transport the micro-capsules back to the hive along with the pollen;
- Inform contract pesticide applicators operating on the property of the locations of apiaries;
- Paying particular attention to windspeed and direction, air temperature and time of day before applying pesticides;
- Using buffer zones as a mechanism to reduce the impact of spray drift or overspray; and,
- Avoiding drift and contamination of surface waters where bees may drink (see advice on risk management for aquatic organisms).

Bee Alert

The Cotton CRC website hosts a voluntary service called 'Bee Alert' that aims to improve communication between hive owners and cotton growers. Bee Alert is a free service which allows beekeepers to regularly update information about their hives on the web page for use by cotton growers. The Cotton CRC oversees the placement of data, allowing the Regional Cotton Extension Officer to be notified when new listings are made in a region. Communication with growers and aerial operators can then be co-ordinated locally. Each Bee Alert provides;

- A description of where the hives are located;
- The likely duration of their stay; and,
- Contact details for the apiarist to be used in the event that hives may need to be moved.

When communicating with beekeepers, encourage them to use this service, particularly when apiaries are being placed within bee flight range of flowering crops.

Cotton CRC weblink: www.cottoncrc.org.au/content/ Industry/Tools/BeeAlert/Bee_Sites_All_Regions.aspx

Further information about protecting bees or to contact the owner of bee hives

NSW Apiarist Association

Ms Julie Lockhart, Secretary nswaa@optusnet.com.au Phone (02) 9863 4338. Fax (02) 9631 0585

QLD Beekeepers Association Inc.

Mr Bob Johnson, Secretary

Phone: (07) 54457512; Email: qbainc@bigpond.com

Trevor Weatherhead, President

Phone: (07) 54672135; Email: queenbee50@bigpond.com

DPI NSW

Dr Doug Somerville,

Technical Specialist – Honeybees PO Box 389, Goulburn NSW 2580

Phone: (02) 4828 6619. Mobile: 0427 311 410 Email: doug.somerville@industry.nsw.gov.au

DEEDI Qld

Peter Warhurst, Apiary Officer Locked Bag 17, Warwick QLD 4370

Phone: (07) 4661 6623. Mobile: 0428 616 623

Email: peter.warhurst@deedi.qld.gov.au

TABLE 43: Cotton insecticides with known residual toxicities to honey bees				
Active Ingredient	Chemical group	Residual toxicity to bees ¹	Comment	
fipronil	phenyl pyrazole	7 to 28 days	Long residual. See label extract above.	
spinosad	spinosyn	1 day	Not hazardous once the spray has dried. Avoid drift onto hives.	
betacyfluthrin	synthetic pyrethroid	>1 day	Longer residual expected in Australian conditions.	
chlorfenapyr	pyrole		Foraging behaviour could be affected for >2 days	
esfenvalerate	synthetic pyrethroid	1 day		
lambda-cyhalothrin	synthetic pyrethroid	>7 days	Micro-encapsulated formulation has longer residual.	
carbaryl	carbamate	up to 7 days		
chlorpyrifos	organophosphate	up to 1 day		
dimethoate	organophosphate	up to 3 days		
parathion	organophosphate	1 day	Depending on weather conditions, residual may be 4–6 days ² .	
methidathion	organophosphate	3 days		

Source: Primefact 149, Pesticides – a guide to their effect on honey bees.

Residual toxicity is the amount of time the pesticide remains toxic after application. Data is derived from United States field trials conducted by the University of California (Atkins et al. 1981, Reducing pesticide hazards to honey bees) and Washington State University (Mayer et al. 1999, How to reduce bee poisoning from pesticides) unless otherwise indicated.

2 United States Environment Protection Agency.

Protecting the aquatic environment

The risk to aquatic organisms can be managed by:

- Preventing drift into surface waters during application;
- Locating mixing/loading and decontaminating facilities away from surface waters and providing such facilities with bunding and sumps to prevent movement of either concentrate or rinsate into surface waters;
- Installing valves which prevent back-flow when filling spray tanks from surface waters and in suction lines for chemigation systems which draw directly from surface waters;
- Avoiding aerial application of spray on fields during irrigation;
- Building sufficient on-farm storage capacity (including provision for storm run-off) to contain pesticide contaminated tail water from irrigation;
- Spraying in an upstream direction, when it is necessary to spray near surface waters, to reduce the maximum concentration at any one point in the watercourse;
- Using only registered products to control aquatic weeds, e.g. Roundup Bioactive rather than Roundup; and,
- Avoiding disposal of used containers in surface waters and on flood plains and river catchments.

RELATIVE HERBICIDE VOLATILITY Active Ingredient Product Example HIGH VOLATILITY* 2,4-D ethyl ester Estercide 800 2,4-D Ester 800 2,4-D isobutyl ester 2,4-D n-butyl ester AF Rubber Vine Spray **SOME VOLATILITY** MCPA ethylhexyl ester LVE MCPA MCPA isooctyl ester LVE MCPA Low Volatile Ester 400 2,4-D isooctyl ester triclopyr butoxylethyl ester Garlon 600 picloram isooctyl ester Access **LOW VOLATILITY** MCPA dimethyl amine salt MCPA 500 2,4-D dimethyl amine salt 2,4-D Amine 500 2,4-D diethanolamine salt 2,4-D Low Odour 500 2,4-D isopropylamine salt Surpass 300 2,4-D triisopropylamine Tordon 75-D 2,4-DB dimethyl amine salt **Buttress** dicamba dimethyl amine salt Banvel 200 triclopyr triethylamine salt Tordon Timber Control Tordon 75-D picloram triisopropylamine picloram triethylamine salt Tordon Granules

From Mark Scott, Agricultural Chemicals Officer, DPI NSW.

Protecting birds

The organophosphate and carbamate insecticides can be particularly toxic to birds, especially in granular formulations. Bird kills from diazinon, monocrotophos and carbofuran have been well documented in Australia and overseas. Insecticidal seed dressings can pose similar risks. Just a few seeds and granules can be lethal. Spillages can be very hazardous as birds can easily ingest a toxic dose from a small area.

Risks to birds from granular products can be managed by:

- Ensuring complete incorporation beneath the soil, particularly at row ends where spillage may occur; and,
- Immediate clean up of spillage, however small.

Bait materials for control of rodents or soil insect pests can also be hazardous to birds, either through direct consumption of the bait or from feeding on bait-affected animals or pests. The risks to birds from baits can be managed by:

- Ensuring even bait distribution, with no locally high concentrations;
- Not baiting over bare ground or in more open situations, such as near crop perimeters, where birds may see the baits;
- Not baiting near bird habitat such as remnant native vegetation;
- Use of bait stations which prevent access by birds, particularly near bird habitat;
- Only baiting where pest pressure is high;
- Baiting late in the evening when birds have finished feeding;
- Prompt collection and burial of rodent carcasses where these occur in open situations; and,
- Immediate clean up of spillage, however small.

Foliar applied insecticide sprays can also be hazardous to birds, either because of direct contact with the sprayed chemical, or by feeding on sprayed insect pests or crops. Even where birds are not killed, they may be sufficiently affected to make them more vulnerable to predation. Contaminated seed and insects collected from sprayed fields by parent birds can also be lethal to young chicks still in the nest. Risks to feeding and nesting birds can be managed by:

- Minimising drift into remnant vegetation, wildlife corridors, nesting sites, or other bird habitats;
- Actively discouraging birds from feeding in crops which are to be sprayed;
- Spraying late in the day when birds have finished feeding; and,
- Using only low toxicity chemicals when large concentrations
 of birds are nesting nearby. The best way to manage any long
 term adverse environmental risks is to follow the protection
 statements on labels, minimise spray drift, and to dispose
 of chemical containers and waste in accordance with label
 directions and codes of practice.

Recycle Chemical Containers

Recycling is now possible for properly rinsed metal and plastic containers used for farm chemicals. drumMUSTER is the national program for the collection and recycling of non-returnable crop production and animal health product chemical containers.

The containers when presented at a drumMUSTER receival site MUST BE: Free of chemical residue with the lids removed. Some stains are acceptable but physical chemical residue is not. Dirt, dust and mould are not reasons for rejection.

^{*} The APVMA has taken the decision to continue to suspend the registration of products containing high volatile ester forms of 2,4-D, namely the ethyl, butyl and isobutyl esters. Refer to page 152 for more information.

Legal responsibilities

Inspection of containers at drumMUSTER collection points is necessary to ensure that containers can be safely recycled. There must be no product residue on the inside or the outside of the container, including the thread and cap. Visible residues could be powder, flake, coloured /dark fluid or clear fluid.

Preparing chemical drums for recycling

Always follow these procedures to ensure your drums are suitable for delivery to a collection centre:

- Triple or pressure rinse your containers immediately after use (residues are more difficult to remove when dry). Pour the rinse water back into the spray tank.
- Thoroughly clean the container thread and outside surfaces
 with a hose into the spray tank. Rinse all caps separately in
 a bucket of clean water, and pour the rinsate into the spray
 tank
- Inspect the container, particularly the thread and screw neck to ensure all chemical residue has been removed.
- Metal containers should be punctured using a steel rod or crowbar, this should be done by passing it through the neck/ pouring opening and out the base of the container. This also allows the containers to vent and remove any residual odour.
- Allow the containers to drain completely and air dry them (this may take a number of days) to ensure they do not retain any rinse water.
- Store cleaned containers in a sheltered place with caps removed, where they will remain clean and dry until they can be delivered to a *drumMUSTER* collection centre.

If containers are rejected the user is responsible for ensuring that the container is taken back to the property and cleaned using all rinsate to make up an application of the same chemical according to the label recommendations.

For information on the *drumMUSTER* program phone 1800 008 707 or contact your local representative:

Northern NSW Queensland Phil Tucker Colin Hoey 0427 925 274 0428 964 576

Safely dispose of unwanted chemicals

ChemClear is an industry stewardship program which is funded to collect currently registered agricultural and veterinary chemicals at the end of their life cycle, or, when they become surplus. The program is targeted to meet disposal requirements of ag and vet chemical users, and, whilst doing so diverts potential hazardous chemicals from being dumped in landfills, creeks or being inappropriately disposed of in the community.

Unwanted rural chemicals may result from; discontinued use of a chemicals because of changes in cropping or animal practices, development of newer, more effective or safe chemicals, changes in a chemicals registration through the APVMA and/or banning from use, unknown product, sale of property, inherited product and deceased estates. Any unwanted or unknown chemicals held on farm are potential hazards to people, the environment and the community. The ChemClear program arranges for the collection of unwanted chemicals for their appropriate environmental disposal.

Registering to use the ChemClear program

There are six simple steps in using the program;

- Take an inventory of any unwanted rural chemicals. The inventory should include all identifiable features of the container including label, manufacturer, expiry date, size of container and the remaining quantity of chemical left in the container.
- 2. Register the inventory for the next collection in your area. Book on; free-call 1800 008 182 or at; www.chemclear.com.au
- 3. Continue to store your registered chemicals safely and securely.
- 4. ChemClear will contact you direct to advise the location for retrieval.
- 5. Prepare chemicals for delivery to collection site.
- 6. Deliver chemicals.

The cost to use the ChemClear service depends on the chemical to be collected. Group 1 chemicals are collected free of charge under the program. These chemicals are currently registered ag and vet chemicals manufactured by companies supporting the Industry Waste Reduction Stewardship initiative. Group 2 chemicals are those chemicals that are no longer registered, unknown, unlabelled, out of date, or mixed ag and vet chemicals. A fee applies for disposal.

IMPORTANT: USE OF PESTICIDES

Pesticides must only be used for the purpose for which they are registered and must not be used in any other situation or in any manner contrary to the directions on the label. Some chemical products have more than one retail name. All retail products containing the same chemical may not be registered for use on the same crops. Registration may also vary between States. Check carefully that the label on the retail product carries information on the crop to be sprayed.

This publication is only a guide to the use of pesticides. The correct choice of chemical, selection of rate, and method of application is the responsibility of the user. Pesticides may contaminate the environment. When spraying, care must be taken to avoid spray drift on to adjoining land or waterways.

Pesticide residues may accumulate in animals treated with any pesticides or fed any crop product, including crop residues, which have been sprayed with pesticides. In the absence of any specified grazing withholding period(s), grazing of any treated crop is at the owner's risk. Withholding periods for stock treated with any pesticides or fed on any pesticide treated plant matter must also be observed. Animals which test positive for chemical residues (i.e. with readings which exceed maximum residue limits for certain chemicals) at slaughter will be rejected. Pesticide residues may also contaminate grains, oils and other plant products for human use and consumption. Growers should observe harvest withholding periods on the pesticide label and should not assume that in the absence of a withholding period or after the expiry of a withholding period that the plant products will be free of pesticide residues.

Some of the chemical use patterns quoted in this publication are approved under Permits issued by the Australian Pesticides and Veterinary Medicines Authority (APVMA) at the time the publication was prepared. Persons wishing to use a chemical in a manner approved under Permit should obtain a copy of the relevant Permit from the APVMA and must read all the details, conditions and limitations relevant to that Permit, and must comply with the details, conditions and limitations prior to use.

Cancellation of endosulfan registration

The APVMA cancelled the approvals and product registrations of endosulfan in October 2010. Concerns over the impact from spray drift and runoff of endosulfan on aquatic organisms, together with new information indicating that endosulfan is persistent, bioaccumulates and has the potential to travel long distances, prompted this action. Given the relatively limited amounts of endosulfan in use, the APVMA is allowing a phaseout period of two years for the sale and use of remaining stocks. This is consistent with other recent international regulatory decisions.

Possession and custody

Possession and custody of existing stocks of cancelled active constituent is permitted until 11 October 2012. Possession and custody of existing stocks of products containing endosulfan is permitted until 12 October 2012.

Supply

Supply of the active constituent endosulfan is permitted until 11 October 2012. Supply of any product that contains endosulfan is permitted until 12 October 2012.

Use

Use of cancelled product containing endosulfan in accordance with label instructions is permitted until 12 October 2012.

For more information: www.apvma.gov.au

2,4-D label restrictions

To minimise the likelihood of off-target damage the APVMA has placed restrictions on wind speeds and droplet sizes for the use of all 2,4-D products.

Wind speed and droplet sizes

To minimise chemical spray drift, all 2,4-D products in the market now contain the following label instructions:

- DO NOT use unless wind speed is more than 3 kilometres per hour and less than 15 kilometres per hour as measured at the application site.
- DO NOT apply with smaller than coarse to very coarse spray droplets according to the ASAE S572 definition for standard nozzles.

Suspension of 2,4-D High Volatile Esters (HVE)

The APVMA has continued the suspension of registration and label approvals of products containing high volatile ester (HVE) forms of 2,4-D, namely the ethyl, butyl and isobutyl esters. Suspensions of 2,4-D ethyl, butyl and isobutyl esters and all associated label approvals are in effect until 31 January 2012. This suspension does not affect the availability of 2,4-D low volatile ester or 2,4-D amine formulations. During the period of suspension new instructions for use apply to all products containing 2,4-D HVEs. For a full list of these instructions go to www.apvma.gov.au

Permissible dates of application of 2, 4-D HVEs

Application of 2, 4-D ethyl ester, butyl ester or isobutyl ester must only take place during a spray window between 1 May and 31 August.

Vic, WA, Tas and Qld currently have mechanisms whereby the use of specific chemicals (including 2,4-D is restricted to geographical areas and/or time zones due to the higher risk for adverse off-target crop or environmental effects. These state restriction on 2, 4-D use may place additional requirements on users within this spray equipment. Users must consult their local authority or department of agriculture to ensure they meet state requirements.

In Queensland any 2,4-D ester formulation, whether high or low volatile, is totally banned in Hazardous Area No 2 covering in general terms the Darling Downs and adjacent areas. In addition in Hazardous Area No. 2 any herbicide containing an ester formulation of picloram can only be applied by a licensed commercial operator holding a distribution permit issued by Biosecurity Queensland. In Hazardous Area No 3 which covers a substantial area surrounding the town of Emerald the spraying of ester formulations of 2,4-D can only be undertaken by a licensed commercial operator holding a distribution permit issued by Biosecurity Queensland. To determine if your property is located in either Hazardous Area you will need to consult the atlas linked to the DEEDI website.

For more information: www.apvma.gov.au

Re-entry periods after spraying

Mark Scott, DPI NSW

The re-entry period is the period in which a treated field must not be re-entered by unprotected persons after the application of a chemical on a crop. This should be considered as part of the risk assessment. Workers including chippers must be advised on the correct time lapse. It is important to observe the re-entry period when contact between foliage and skin is unavoidable. Herbicides are not included in the tables below as they are generally not as toxic.

Always check the label for the re-entry period

Where no re-entry period is stated, a minimum of 24 hours should be observed or until the chemical has dried upon the crop, whichever is the later (subject to risk assessment), unless appropriate Personal Protective Equipment (PPE) is provided and worn as intended. Caution should be exercised when entering wet crops where chemicals have previously been applied, irrespective of the time lapse between application and re-entry.

Even after the re-entry period has been observed, some PPE may be necessary. Appropriate PPE should be indicated by the risk assessment.

Re-entry periods and the PPE to be worn are found in the General Instructions section of the label, which follows the Directions for Use table. All information will be found under the heading 'Re-entry Period'.

Re-entry periods may vary with formulation and product. The examples given in the table below may not be the same for all products with the active ingredient. Older labels for the same product may have different or no re-entry restrictions. Check the label of the product you are using and follow the directions. If entry is necessary before the time stated, limit duration of entry and wear cotton overalls buttoned to the neck and wrist (or equivalent clothing), a washable hat, and elbow-length chemical resistant PVC gloves. Clothing must be laundered after each day's use.

Re-entry periods may change or be added to labels as chemicals are re-evaluated. Always read the label.

Refer to Table 18, page 40 for the trade names of active ingredients.

INSECTICIDES	WITHOUT LABEL RE-ENTRY PERIODS
Active ingredient	Hazard Classification (WHO 2009)
Spinosad, Bt, Rynaxypyr (chlorantraniliprole), clothianidin	Unlikely to present acute hazard in normal use
Dicofol, Propargite	Slight
Alpha-cypermethrin, Pirimicarb	Moderate

TABLE 44: Comr periods	mon insecticides with label re-entry
Active ingredient	Re-entry period
Abamectin	Under field conditions the spray should be allowed to dry on the foliage before re-entry into treated areas.
Acetamiprid	Do not allow entry into treated areas until the spray deposits have dried.
Amitraz	Do not allow entry into treated areas until the spray deposits have dried.
Amorphous silica	Do not allow entry into the treated area until the spray has dried.
Bifenthrin	Do not re-enter treated field/crop until spray deposits have dried.
Beta-cyfluthrin	Do not allow entry into treated areas until spray has dried.
Chlorfenapyr	Do not allow entry into treated areas for 12 hours after treatment.
Chlorpyrifos	Do not allow entry into treated areas until spray deposits have dried.*
Deltamethrin	Do not allow entry into treated areas until the spray deposits have dried.
Diafenthiuron	Do not allow entry into treated areas for 24 hours after treatment.*
Emamectin benzoate	Do not allow entry into treated areas for 12 hours after treatment.
Endosulfan	Re-entry to treated areas is permitted once the spray has dried.
Etoxazole	Do not allow entry into treated areas until the spray has dried.
Gamma cyhalothrin	Do not allow entry into treated areas until spray has dried
Indoxacarb	Do not allow entry into treated areas until spray has dried.
Lambda-cyhalothrin	Do not allow entry into treated areas until the spray has dried.
Methomyl	Do not allow entry into treated areas until at least 24 hours after treatment.
Methoxyfenozide	Do not allow entry into treated areas until spray has dried.
NPV	Do not allow entry into treated areas until spray has dried.
Profenofos	Do not enter treated areas without protective clothing until 24 hours after spraying.
Pymetrozine	Do not allow entry into treated areas until spray has dried.
Pyriproxyfen	Do not allow re-entry into treated area until the spray has dried.
Spinosad	Do not allow entry into treated areas until spray has dried.
Spirotetramat	Do not allow entry into treated areas until the spray has dried.
Thiametoxam	Do not allow entry into the treated areas until spray has dried.
Thiodicarb	Do not allow entry into treated areas for 1 day after treatment.
*Check label instructions for	cotton chippers.

Withholding periods (WHP) after pesticide application

Mark Scott, DPI NSW

WHP is the minimum time period from when a pesticide is applied to when the treated area is allowed to be grazed, cut for fodder or harvested.

Some pesticide labels prohibit grazing by livestock or cutting fodder for livestock. Where a product has a no grazing WHP, crops treated with the product should not be grazed prior to harvest. Stock that graze the stubble or are fed by-products of the treated crop may develop detectable residues of the chemical. Growers should read the label and contact the chemical manufacturer for advice on managing chemical residues in stock.

Pesticides users must comply with these instructions or they may be prosecuted under offence provisions of the Pesticides Act 1999 for use of a pesticide in disregard of a label.

TABLE 45: Withholding period after application for common chemicals

Active ingredient	Crops not to be harvested for:	No grazing or cutting as stock fodder for:
Insecticides/miticides		
Abamectin	20 days	20 days
Acetamiprid	10 days	Do not graze or cut for stock fodder.
Aldicarb	0	Do not graze or cut for fodder. Do not cotton trash to animals feed
Alphamethrin	14 days	not stated
Alpha-cypermethrin	14 days	not stated
Amitraz	21 days	not stated
Amorphous silica	0	0
Bacillus thuringiensis	0	0
Bifenthrin	14 days	not stated
Beta-cyfluthrin	28 days	not stated
Carbaryl	3 days	1 day
Chlorantraniprole	28 days	Do not allow livestock to graze crops, stubble or gin trash
Chlorfenapyr	28 days	Do not graze or cut for fodder
Chlorpyrifos	28 days	28 days
Chlorpyrifos-methyl	28 days	Do not graze crop or stubble
Clothianidin	5 days	Do not graze or cut for stockfeed. Do not feed gin trash to livestock
Cypermethrin	14 days	not stated
Deltamethrin	7 days	not stated
Dicofol	7 days	Do not graze or cut for fodder
Dimethoate	14 days	not stated
Disulfoton	70 days	70 days
Emamectin benzoate	28 days	Do not feed cotton trash from treated areas to animals
Endosulfan	56 days	Do not feed cotton fodder, stubble or trash to livestock.
Active ingredient	Crops not to be harvested for:	No grazing or cutting as stock fodder for:

TABLE 45: Withholdi	ng period after application for
common chemicals	

Active ingredient	Crops not to be harvested for:	No grazing or cutting as stock fodder for:
Insecticides/miticides		
Esfenvalerate	7 days	not stated
Etoxazole	21 days	Do not graze treated area or cut treated area for stock feed
Fipronil	28 days	Do not graze or cut for fodder
Gamma-cyhaldthrin	21 days	not stated
Imidacloprid	91 days	Do not graze or cut for fodder
Indoxacarb	28 days	Do not graze or cut for fodder
Lambda-cyhalothrin	21 days	not stated
Methidathion	3 days	not stated
Methomyl	0	Do not graze or cut for fodder
Methoxyfenoziole	28 days	Do not graze or cut for fodder
NPV	0	0
Omethoate	21 days	not stated
Paraffinic oil	1 day	not stated
Parathion	14 days	Do not graze or cut for fodder
Pirimicarb	21 days	21 days
Profenofos	28 days	not stated
Propargite	28 days	Do not graze or cut for fodder
Pymetrozine	28 days	Do not graze crop stubble or gin trash
Pyriproxyfen	28 days	Do not graze on or cut for stock feed. Do not feed treated cotton trash to livestock
Spinosad	28 days	Do not graze or cut for fodder
Thiamethoxam	28 days	Do not graze or feed cotton trash to stock
Thiodicarb	21 days	21 days
Growth regulator and	defoliant chemica	als
Dimethipin	7 days	7 days
Endothal	1 day	Do not graze
Ethephon	7 days	Do not graze
Ethephon + cyclanilide	7 days	Do not graze
Mepiquat	28 days	Do not graze
Paraquat + diquat	7 days	1 day
Sodium chlorate	0	0
Thidiazuron	0	Do not graze or cut for fodder

The WHP given may not be the same for all products with that active ingredient.

Refer to Table 15 for the trade names of active ingredients

myBMP – a web based management system for the cotton industry

myBMP is a web-based management system that provides growers access to the Australian Cotton industry's best practice standards, supported by the latest scientific knowledge, resources and technical support. It represents a complete rejuvenation and extension of the original BMP system, and provides growers with the tools required to improve production performance, better manage business risk, maximise potential market advantages and demonstrate responsible and sustainable natural resource management to the community.

myBMP is the result of industry wide consultation with growers, researchers and industry bodies, taking into consideration the requirements of the cotton industry now and into the future. The initiative is strongly supported by the Cotton Research Development Corporation, Cotton Australia and the Cotton Catchment Communities CRC.

Getting Started

- *my*BMP can be accessed via www.mybmp.com.au once on the home page, selecting the "Register Here" text will take you through the registration process (Tip the "Demonstrations" text will allow you to access a video tutorial, showing you how to complete the process once registered you can watch virtual tours of all of the *my*BMP features from the Grower Home Page).
- **Support** If at any time you have questions about *my*BMP, you can either email the *my*BMP Service Manager via admin@mybmp.com.au or call **1800 COTTON** for one on one support.

What's new

- A new system of classification Level 1 is the entry level that covers off legal requirements and Level 2 contains what is considered industry best practice. Together these two levels comprise the content required to complete *myBMP* certification. Level 3 and Level 4 are aspirational levels that cover those practices that will be considered best practice in the next 5 and 10 years respectively.
- **Simplicity** being web based, *my*BMP has done away

- with clunky manuals and paper based assessments. All information is lodged electronically and stored confidentially. *my*BMP allows the user to upload documents relevant to their *my*BMP practices in one easy to manage on-line filing cabinet.
- **No doubling up** *my*BMP has the ability to cross-reference *my*BMP practices against the old BMP program, automatically populating completed practices from one system to the other. No time spent by the grower transferring data from the old system to the new.

Why use myBMP

- *my*System tailored by you for you *my*BMP allows you to work through the program modules in the order and to the levels that suit your business priorities. *my*BMP has been designed to accommodate all users from the seasoned BMP user to growers who have never grown cotton or used BMP before.
- *my*Resources every practice is linked to its own reference source, with a pop up box that provides definitions, explanations, templates, calculators and links to further information. No more need for Google searches because *my*BMP provides access to all the latest information and research results in one easy to access place.
- *my*Insurance *my*BMP Level 1 practices provide guidelines and practical advice on how to comply with legal requirements ranging from the storage and use of chemicals to Human Resource requirements, helping you to better manage the risks associated with your business.
- <u>my</u>Certification those growers who choose to seek certification will find the new and streamlined auditing process easier to manage.
- *my*Farm with the introduction of a web-based Grains BMP in Queensland, cotton's *my*BMP has the ability to cross reference your BMP practices against one another, automatically populating those practices that you have completed from one system to the other.

Bring the cotton industry into your office Bring the cotton industry into your office BIMP WWW.myBMP.com.au To arrange your personal introduction to myBMP, contact myBMP Service Manager, 1800 COTTON

INDEX

2,4-D	G	Predatory beetles 7-9
95-97, 101, 108, 111, 146, 148, 154, 156	Green vegetable bug 32, 129	Predatory bugs 7-9
A	H	Pupae busting 59-61 , 66 , 68-69 , 76 , 78 , 80-85 , 87 , 91 , 99 , 119
Alternaria leaf spot 34, 120 -121, 124, 129, 131	Hazardous substances 142 , 152 Helicoverpa 8-13 , 48-51 , 56 , 58-61 , 63-64 ,	Pyrethroids 9, 11, 15, 22, 27, 30, 35, 64, 66, 70-73, 152
Aphids 7-9, 14-18, 23, 38, 48-51, 56, 58-61, 63-64, 66-67, 68-73, 118, 121, 125-126, 139	66-76 ,74-87, 118-119	Pythium 122, 126, 131
Green peach 14-18	Armigera 10-11, 13, 50, 59, 61-64, 66, 69, 74-79	R
APVMA 77-78, 80, 146, 148, 155, 156	Punctigera 12-13 , 61 , 64 , 74-79	
Area Wide Management 50, 62	Herbicides 87-119, 142, 146, 148, 150	Ratoon cotton 118-119 , 14 , 35 , 61 , 81-85 , 106 , 120 , 125-126
Armyworm 36, 61	Herbicide plant back periods 95-96	Re-entry periods 157
Assassin bugs 7-9, 11, 34, 56	Herbicide resistance 87 , 97-101	Refuge crops 11-12, 51, 61, 64, 74-87, 118
В	Herbicide trade names 111	Rhizoctonia 122 , 126 , 131
Bacterial blight 120-121 , 126 , 141	Honeydew 14, 26, 35, 50	Rotation crops 61 , 82-86 , 88-92 , 95-97 ,
Barnyard Grass 89-90, 92, 97-101	I	99-100, 118, 120, 122-123, 126-127
Bees 8-9, 152-153	Insecticide Resistance Management Strategy	Rough bollworm 37, 39
Beneficials 7-9, 10 -12, 14-15, 19, 22, 27,	59-60, 68-73	Roundup Ready Flex 90, 97-98, 104-106,
30- 32, 34-36, 48, 49-51, 56, 58-63	Insecticides	118-119
Beneficial Disruption Index 56 , 59	Insecticide trade names 40-47	S
Biofumigation 121-122	Integrated Disease Management 120-121	Sampling Methods
Biosecurity 137-141	Integrated Weed Management 88-94	
Birds 56 , 59 , 149 , 154 Black root rot 118 , 120-122 , 127	Integrated Pest Management 6-9, 49-67	Beat sheet 19 , 34 , 51
Bollgard 10-12, 49-51, 56, 58-64, 66, 74-87,	L	Collections 23, 26-27, 48, 51, 101
119	Legal responsibilities 142 , 150-155 , 159	D-Vac 51
Planting window variation 80	Liberty Link 102-103, 110, 118-119	Suction sampling 51
RMP 74-87	Liverseed Grass 89-90, 92, 97-98	Sweep net 19 , 51
Boll rots 120-121 , 124 , 128	Locust 31	Visual sampling 10, 14, 19, 21, 23, 26, 30
Bt resistance 11-12, 74-87	M	34, 35, 51
C	Mealybug 35-36, 61, 137	Seedling disease 122, 126, 131
ChemClear 155	Microplitis 11, 151	Seed treatments 15, 30, 47, 68, 121, 123, 13
CottASSIST 17, 21, 28, 60	Mirids 19-20, 29, 51, 59, 64, 69	Solenopsis Mealybug 35-36 , 61 , 137
Cotton bunchy top 14, 118, 121, 124-126,	Mites 21-25, 30, 56, 63, 68, 138	Sowthistle 91 , 93 , 97-98 , 15 , 22 , 28
128-129	myBMP 58, 62, 120, 138, 152, 159	Spray additives 48, 151
Cotton leafhopper 37	·	Spray drift 5, 107, 131, 133, 142, 144-146,
Cowvine 89, 93	N	148-149, 152-156
Crop Development Tool 52	Neonicotinoid 15, 47, 60, 68-69	Spray nozzles 146, 156
Cutworm 36 , 61	Nodes above cracked boll 50 , 133	T
D	Nodes above white flower 54, 52	Telenomus 11, 151
Dangerous goods legislation 152	No Spray Zone 148 Nutgrass 94	Thresholds 5, 6, 10, 12, 14, 19, 21, 27-32,
Defoliants/defoliation 133-135	-	34-35, 38-39, 51-52, 54, 56, 59, 63, 68, 79
Diapause 11, 59, 60, 66	0	Thrips 7-9, 21-22, 30-31, 69, 121, 124
Diapause Induction and Emergence Tool 60 Diseases 120-132	Overwintering habit 11, 12, 15, 20, 22, 28, 30, 32, 35	TIMS Committee 63-68 , 76-78 , 80-85 , 103 ,
drumMUSTER 154		106
	P	Tipworm 36 , 39 , 49 , 61
E	Pale cotton stainers 34-35	Tobacco streak virus 120-121, 124, 129
Eggs collections 48 Exotic pests and diseases 137-141	Parasitoids 7-9, 10-12, 15, 19, 21-22, 27, 30, 34, 36, 50-51, 56, 58, 69	Trap crops 20 , 50 , 60 - 62 , 78 - 79 , 83 , 85 , 86 - 87
F	Pesticide Application Management Plan 62 ,	Trichogramma 8-11, 51, 56, 58, 78
Feathertop Rhodes Grass 94	142 Destinides and the environment 152	\mathbf{V}
First position fruit 50 , 54 , 55 , 63 , 133	Petroleum spray oils 46, 56, 59	Vegetative Growth Rate 54, 133
Flaxleaf Fleabane 94, 97, 90-91	Petroleum spray oils 46 , 56 , 59 Pigeon pea 61-62 , 77-78 , 81 , 80-85 , 86-87	Verticillium wilt 120-123 , 128 139
Food sprays 48 , 56 , 58 , 78	Pink spotted bollworm 37	W
Fruiting factor 10, 52, 55, 63	Plant growth regulators 54 , 158	Whitefly 8-9, 26-29, 48-51, 56, 58, 61, 64,
Fruit retention 10, 19, 32, 50-52, 54, 55, 63, 68, 133	Polymeria 93	69, 118, 139-140
Fungicides 121-122 , 131-132	Predators 7-9, 10-12, 15, 27, 51, 56	Wireworm 36, 126
Fusarium wilt 61 , 120-124 , 126-127 , 131 , 140	predator to pest ratio 11, 50-51, 56	Withholding periods 158

This publication is brought to you by The Australian Cotton Industry Development and Delivery team...

Ken Flower
General Manager
Research Implementation
and myBMP
Cotton CRC, CRDC,&
CA, Narrabri, NSW
Research Implementation
and myBMP Lead
Mobile 0457 811 627
kenneth.flower@csiro.au

Susan Maas Extension Officer DEEDI, Emerald Qld Farm Hygiene and Disease Lead Mobile: 0409 499 691 Susan.maas@deedi.qld. qov.au

Tracey Leven
Program Manager,
Farming Systems
Investment
CRDC, Narrabri, NSW
Mobile: 0427 921 555
Tracey.leven@crdc.
com.au

Sally Ceeney
Cotton Pest Management
Lead
Cotton CRC, Warren,
NSW
Mobile: 0459 189 771
ms.ceeney@gmail.com

Yvette
Cunningham
Communications
Manager, Cotton CRC
ACRI, Narrabri, NSW
Mobile: 0438 992 454
Yvette.Cunningham@
csiro.au

Sally Dickinson
Regional Landcare
Facilitator
Moree
Mob: 0427 521 498
sally.dickinson@gvia.
org.au

Helen Dugdale
Project Consultant
Mobile: 0417 064 507
helend@northnet.com.au

Graham Harris Irrigated Farming Systems Team Lead DEEDI, Toowoomba, Qld Water Use Efficiency Lead Mobile: 0427 929 103 Graham.Harris@deedi. qld.gov.au

Mark Hickman
Professional Development
Officer Cotton
DEEDI, Toowoomba, Qld
Training and Education
Lead
Mobile: 0407 113 096
Mark.hickman@deedi.
qld.gov.au

James Hill
Cotton Weed
Management Lead
Cotton Australia Regional
Manager
Cotton CRC, Hay, NSW
Mobile: 0408 892 317
Jh2solutions@bigpond.
com

Dallas King Farming Systems Lead Cotton CRC, St George Mobile: 0427 635 621 Dallas.king.bac@ bigpond.com

Dave Larsen Extension Officer & Knowledge Management 1&I NSW, ACRI Narrabri Technology Resource Centre Coordinator Mobile 0418 432 007 David.Larsen@industry. nsw.gov.au

Geoff McIntyre Principal Extension Officer, DEEDI, Dalby, Qld Qld Irrigated Farming Systems Lead Mobile: 0419 667 451 Geoff.Mcintyre@deedi. qld.gov.au

Lance
Pendergast
Irrigation Extension
Officer DEEDI, Emerald,
Old
Mobile: 0448 601 842
Lance.pendergast@deedi
qld.gov.au

Janine Powell
Research Economist
1&I NSW, ACRI, Narrabri
Phone: 02 6799 2469
Janine.Powell@industry.
nsw.gov.au

Peter Verwey Namoi Catchment Development Officer Cotton CRC and Namoi CMA Mobile: 0408 972 516 Peter.Verwey@csiro.au

Jim Wark
Cotton Industry
Development Specialist
CSD, Toowoomba
myBMP Business
Manager
Mobile: 0427 050 832
jwark@csd.net.au

Duncan Weir Extension Officer DEEDI, Toowoomba Cotton Nutrition and Soil Health Lead Mobile: 0410 518 214 duncan.weir@deedi.qld. gov.au

Sandra Williams Experimental Scientist CSIRO, ACRI, Narrabri, NSW myBMP Research Coordinator & Web Tools Phone: 02 6799 1585 Sandra.Deutscher@ csiro.au

The updates for this season's version of the guide would not be possible without additional assistance from – DPI NSW: Graham Charles, Mark Scott, Lisa Bird, Karen Kirkby.

CSIRO: Sharon Downes, Lewis Wilson, Sandra Williams.

DEEDI Qld: Zara Ludgate, Richard Lloyd, Melina Miles, Richard Sequira, Michael Widderick, Vikki Osten, Moazzem Khan, Linda Smith, Jeff Werth, Geoff Cowles and Murray Sharman.

As well as Greg Kauter (Cotton Australia), Stephen Allen (CSD), Kristen Knight (Monsanto), James Neilson (Monsanto), Sarah Wilson (Bayer), Frank Taylor (Nufarm).

FRONT COVER PHOTO ACKNOWLEDGEMENTS:
Aphids (pages 14–18) – Lewis Wilson, CSIRO
Ladybeetle, an aphid predator for IPM (pages 49–62) – Susan Maas, DEEDI Qld
Volunteer cotton hosts CBT and aphids (pages 118–119) – Greg Kauter, Cotton
Marshmallow weed (pages 124–125) – Susan Maas, DEEDI Qld
Come Clean Go Clean (p129) – James Hill, Cotton CRC

THE SIMPLE SOLUTION TO A COMPLEX PROBLEM.

Concerned about aphids and the disease risk they pose? Feel that your management options are diminishing by the day?

At Caltex Precision Spray Oils, we hear you.

"Cotton bunchy top disease is a risk I could do without so I need to keep aphids under control."

"I attempted to keep weeds under control in the off season but I fear a green bridge from over the fence will bring real early season pressure."

"Early season aphids and mirids are likely to be a big problem."

"I didn't want to use a seed treatment because I really don't want to risk developing further resistance to neonicotinoids."

"I can't risk an early season neonic or carbamate spray for mirids or aphids because of resistance risk again."

"I can't spray with dimethoate because I might flare SWF later in the season, so I need a soft, early spray option for aphids and mirids that isn't a resistance risk."

Canopy® is the simple solution.

