Chapter 5

The influence of crop development and fruit retention on the timing of crop maturity in UNR and conventionally spaced cotton production systems

5.1 Aim

To identify and describe the differences in crop development and fruit retention for UNR and conventionally spaced cotton and to quantify how those differences influence maturity.

5.2 Introduction

Yield of cotton is ultimately determined by the number of fruit (bolls) per unit area and the amount of lint per boll (Hearn and Constable 1984). Similar yields can be reached over differing times and development rates depending on the pattern of boll production and the capacity of the plant to retain those bolls. Boll distribution and timing can also greatly affect crop maturity. The time for a crop to mature is dependent on a range of factors, but is ultimately determined by the time to boll initiation (node of first fruiting branch and time to first square), the rate of boll production (main-stem and sympodial node production), boll growth (retention and boll size), the time to cessation of initiation of new bolls (cut-out) and the time from anthesis to maturity of those bolls retained (boll period) (Harland 1929; Richmond and Radwan 1962; Ray and Richmond 1966; Munro 1971).

The rationale behind UNR cotton production being earlier and higher yielding than conventionally spaced cotton production is relatively simple:

• plants in a high population would be smaller and set fewer bolls per plant;

- yield is maintained as a higher number of plants m⁻² compensates for smaller plants having fewer bolls per plant;
- a smaller plant has fewer fruiting branches and should cut-out earlier;

If these assumptions hold, the fruiting cycle on the smaller plants should be completed sooner than for larger more vegetative plants and the last bolls set and mature earlier (Lewis 1971).

In individual experiments investigating yield and maturity of UNR compared with conventionally spaced cotton no significant differences were found in maturity between the two row spacing treatments, but a combined analysis showed a significant increase in lint yield in the UNR system (Chapter 3). While yield in cotton is primarily linked to biomass development, growth analyses in three of these experiments showed that there were few significant differences in crop biomass accumulation. The increase in yield was most likely caused by increased boll numbers and increased partitioning of dry matter to fruit in the UNR plants (Chapter 4). Due to the effects of competition for light, water and nutrients among the higher number of plants in the UNR system, the growth and development of individual plants is likely to be different between the two row spacing treatments. Plants in the UNR system were observed to be shorter, with fewer nodes, fruiting branches and fewer mature bolls produced per plant (Chapter 3). Yield was at least maintained because the higher density of plants in the UNR treatments compared with the conventionally spaced treatments compensated for the lower number of bolls per plant. However, contradictory to the response to UNR proposed by Lewis (1971), these smaller plants did not mature earlier.

High rates of shedding in the lower fruiting branches have been reported to be the most likely cause of delays in maturity in UNR cotton (Constable 1975; Baker 1976). As Constable and Gleeson (1977) stated, "the success of narrow row spacing and other forms of crop manipulation aimed at rapid crop setting depends on the retention and rapid growth of early bolls". The UNR plants may compensate for early fruit loss by producing more fruit later in the growing season, thus delaying maturity.

Although differences in fruit retention were inconsistent between experiments, a combined analysis of the six experiments in Chapter 3 showed that overall boll retention per plant was significantly lower in the UNR crop compared with the conventionally spaced crop.

However, differences in fruit distribution or loss of early bolls can occur without differences in overall fruit retention. This chapter examines final fruit distribution and the timing of crop development stages in UNR plants compared with conventionally spaced plants to investigate whether the loss of early fruit caused delays in the crop maturity of UNR cotton.

5.3 Methods

5.3.1 Crop developmental stages

To determine the time when specific development phases occurred, four plants per plot were monitored in Exps. 1 and 5. Mapping was conducted twice weekly as it was possible to estimate events accurately a few days back in time by noting leaf, fruit or scar size and colour (Constable 1991). Four stages of fruit development were recorded for each fruit on sympodial branches (Figure 5.1):

- Date of squaring (flower bud appearance) was defined as when the subtending leaf unfolded (Constable 1991).
- Date of anthesis.
- Date of boll opening when at least two sutures on the boll had cracked open.

From the detailed plant maps, timing of a number of developmental stages could be determined. For each plant the dates of first square, first flower, last effective flower (last flower that becomes an open boll), first open boll and last open boll were calculated. Fruit on monopodial branches were not recorded for this study. The days after sowing to each of these developmental stages was compared between row spacing treatments. Boll period (time from anthesis to mature boll) was calculated for each mature boll mapped and compared between row spacing treatments.

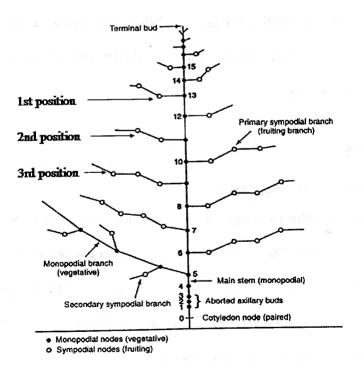


Figure 5.1 Representation of the cotton plant showing main-stem, monopodial and sympodial branch development (From Oosterhuis (1990))

5.3.2 Fruit retention

In Exps. 1, 2, 3 and 5 final fruit distribution and retention (the ratio of open bolls to each fruiting site (square) exerted) were determined through final plant maps. After all the bolls were open and the crop had been defoliated, four plants were harvested from each plot. The number of nodes on each plant was recorded. Each fruiting site was mapped and the presence or absence of fruit at each site was recorded (Figure 5.1).

Fruit retention for each sympodial branch (node) (Figure 5.1) was compared between the two row spacing treatments. Due to the high variation in fruit retention on individual nodes between plants, bolls were divided into different cohorts to examine boll distribution and retention vertically up the plant. As the plants in the conventionally spaced and UNR treatments had differences in the number of fruiting branches only the first 12 fruiting branches were compared: cohort 1 – fruiting branches 1 to 3, cohort 2 – fruiting branches 4 to 6, cohort 3 – fruiting branches 7 to 9 and cohort 4 – fruiting branches 10 to 12.

Statistical analyses

Analysis of variance (ANOVA) was used for comparing treatments effects for most parameters with data transformed where necessary. All statistical analyses were conducted using Genstat[®] software. Unless stated otherwise, significant differences were considered at 95% confidence intervals (P < 0.05).

5.4 Results

5.4.1 Crop development

There were few differences between row spacings in the time to reach definitive crop stages in Exp. 1 (Figure 5.2). Both row spacings reached first square, first flower and first open boll at the same time. The number of days after sowing to last effective

flower was 8.5 days earlier in the UNR treatment compared with the conventionally spaced treatment and the last open boll matured 6.4 days earlier in the UNR treatment compared with the conventionally spaced treatment. The average boll period was not significantly different between row spacings, with the average time from anthesis to maturity for the UNR plants being 65.1 days compared with 65.9 days in the conventionally spaced plants.

There were few differences between row spacings in the time to reach definitive crop stages in Exp. 5 (Figure 5.2). The number of days after sowing to first square was 1.8 days earlier in the UNR treatment compared with the conventionally spaced treatment (P = 0.033). Both row spacings reached first flower, first open boll and last open boll at the same time. The time to reach last effective flower was significantly shorter (by 5.9 days) in the UNR plants compared with the conventionally spaced plants (P = 0.035). The average boll period was significantly longer for the UNR plants with an average boll period of 63.7 days compared with 60.6 days in the conventionally spaced plants (P < 0.001).

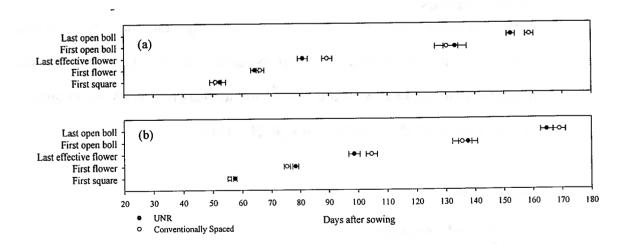


Figure 5.2 Days after sowing to first square, first flower, last effective flower, first open boll and last open boll in Exps. 1 (a) and 5 (b) for UNR and conventionally spaced treatments. Error bars are two standard errors of the mean

5.4.2 Fruit retention per plant

In Exps. 1, 2, 3 and 5 the plants mapped in the UNR spaced treatments had significantly fewer open bolls and fruiting sites than plants mapped in the conventionally spaced treatments (Table 5.1). Overall retention per plant was not significantly different between row spacings in Exps. 1, 3 and 5, but was significantly lower in the UNR plants compared to the conventionally spaced plants in Exp. 2 (Table 5.1).

Table 5.1 Number of fruiting sites, open bolls and retention per plant in Exps. 1, 2, 3 and 5 for UNR and conventionally spaced treatments. (Significant differences indicated by * = 95% confidence level; ** = 99% confidence level)

	Total fruiting sites pe plant	r Total open bolls per plant	Retention per plant (%)	
Exp. 1				
UNR	14.60	3.64	24.7	
Conventionally Spaced	24.20	6.22	25.4	
L.S.D	**5.69	*2.17	6.3	
Exp. 2			3.27	
UNR	16.90	5.17	31.3	
Conventionally Spaced	30.40	14.75	49.2	
L.S.D	**5.39	**2.55	**8.2	
Exp. 3				
UNR	12.06	5.69	47.7	
Conventionally Spaced	23.25	10.50	45.7	
L.S.D	**2.97	**1.37	5.4	
Exp. 5			Hard Hard	
UNR	15.97	6.60	43.9	
Conventionally Spaced	29.46	13.83	46.4	
L.S.D	**4.11	**2.48	9.1	

In Exp. 1, retention per node was only significantly different between row spacings on node 14 (Figure 5.3a). Node 14 had lower fruit retention in the UNR plants. In Exp. 2 retention per node was significantly lower in the UNR plants compared with the conventionally spaced plants on nodes 11, 13, 15, 16 and 17 (Figure 5.3b). In Exp. 3 retention per node was only significantly lower in the UNR plants compared with the conventionally spaced plants on nodes 15 and 16 (Figure 5.3c). In Exp. 5 on nodes 8,

13 and 16 the UNR plants had significantly lower fruit retention compared with the conventionally spaced plants (Figure 5.3d).

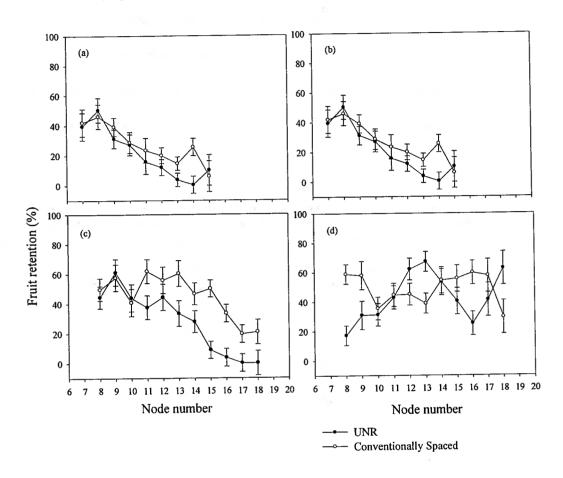


Figure 5.3 Average retention per plant on each node in UNR and conventionally spaced treatments for Exps. 1 (a), 2 (b), 3 (c) and 5 (d). Error bars are two standard errors of the mean.

To account for high variability between individual nodes on a plant, the plants were grouped into four cohorts (three sympodial nodes per cohort). There were few differences in retention per cohort for each cohort in UNR plants compared with conventionally spaced plants in Exps. 1, 2, 3 and 5 (Table 5.2). The only significant differences in retention in Exp. 1 and 3 were in cohort 3 where retention was significantly lower in the UNR plants than conventionally spaced plants (Table 5.2). In Exp. 5, retention of the UNR plants was significantly lower in cohort 1. Exp. 2 had significantly lower retention in cohorts 2 and 3. A higher proportion of bolls were on

the lower two cohorts (1 and 2) for the UNR plants compared with the conventionally spaced plants (Table 1.2b).

In Exps. 1, 2 and 5 the UNR plants had a significantly higher proportion of open bolls in cohort 2 compared with the conventionally spaced plants. In Exps. 2 and 3 the UNR plants had a significantly higher proportion of open bolls in cohort 1 but a significantly lower proportion in cohort 3 and 4. In Exp. 5, the UNR plants also had a significantly lower proportion of open bolls compared with the conventionally spaced plants in cohort 4.

Table 5.2 Retention and proportion of open bolls for cohorts 1 to 4 (3 fruiting branches per cohort) per plant for UNR and conventionally spaced treatments in Exps. 1, 2, 3 and 5. (Significant differences indicated by ** = 99% confidence level)

Experiment	Treatment	Cohort 1 (Fruiting branches 1- 3)	Cohort 2 (Fruiting branches 4- 6)	Cohort 3 (Fruiting branches 7- 9)	Cohort 4 (Fruiting branches 10-12)
Retention (%)					
Exp. 1	UNR	41.3	14.3	1.8	4.6
	Conventionally Spaced	39.0	23.3	10.9	3.6
	L.S.D	15.0	12.0	*8.4	12.7
Exp. 2	UNR	51.7	37.9	15.1	0.0
	Conventionally Spaced	50.3	57.8	43.4	17.9
	L.S.D	18.7	*16.5	**12.1	**7.6
Exp. 3	UNR	65.1	59.4	20.3	14.0
	Conventionally Spaced	66.2	54.8	43:7	21.2
	L.S.D	17.21	10.4	**16.6	16.2
Exp. 5	UNR	31.8	53.5	45.9	40.3
	Conventionally Spaced	48.0	43.5	54.6	37.4
	L.S.D	*15.0	12.8	17.9	34.8
Proportion of op	en bolls in each cohort (%)	selling day with	CL SWIGHT IN	101-381-101
Exp. 1	UNR	74.8	23.4	0.4	1.4
	Conventionally Spaced	55.2	33.4	9.8	1.6
	L.S.D	*14.5	7.6	**5.4	3.8
Exp. 2	UNR	51.1	35.8	11.0	0.0
	Conventionally Spaced	23.8	39.5	27.8	6.7
	L.S.D	**16.0	14.1	**9.4	**2.9
Exp. 3	UNR	38.2	49.2	10.2	2.5
	Conventionally Spaced	25.7	38.0	25.9	8.5
	L.S.D	*12.4	**7.9	**7.8	*5.4
Exp. 5	UNR	27.6	44.1	23.5	4.9
	Conventionally Spaced	29.2	28.3	29.3	12.1
	L.S.D	11.0	**7.8	7.2	*6.5

A combined analysis of fruit retention in each cohort found that there was no significant difference between UNR and conventionally spaced plants for cohort 1 and 2, but there was a significant difference between experiments (P = 0.022) and a significant interaction for fruit retention between row spacings and experiments (P = 0.026). Cohort 3 had significantly lower retention of fruit in the UNR plants compared with the conventionally spaced plants (P < 0.001), significant differences between experiments (P < 0.001) but no interaction. In cohort 4 fruit retention was not significantly different between row spacings, but was significantly different between experiments (P < 0.001) with no interaction between row spacings and experiments.

5.5 Discussion

In both Exps. 1 and 5 there were no large differences between row spacing treatments in time to fruit initiation (first square), time to anthesis (first flower) or time to first open boll. The UNR plants initiated their last effective flower 8.5 days earlier in Exp. 1 and 5.9 days earlier in Exp. 5 than the plants in conventionally spaced row spacings. In Exp. 1, this boll opened 6.4 days earlier but not any earlier in Exp. 5. These differences did not translate into a difference in overall crop maturity in UNR. The average boll period was not different between row spacings in Exp. 1 and only 3 days longer in UNR plants in Exp. 5, indicating that average time from anthesis to maturity for a boll was not greatly affected by row spacing. Hence, the smaller boll size in the UNR treatments was due to reduction in boll growth associated with limited assimilate supply. Even if the fruit is not abscised, boll size can be significantly reduced if assimilate supply to the developing boll is below optimum.

UNR plants were smaller and had fewer sites and bolls per plant. This change in plant architecture in response to narrow row spacings and higher plant populations had been found in other studies (Jost and Cothren 2001; Vories *et al.* 2001; Marois *et al.* 2004; Nichols *et al.* 2004). It had also been found that higher plant populations compensated for the smaller plants, and total boll number was usually the same or slightly higher (Witten and Cothren 2000). There were no differences in total retention per plant between row spacings in Exps 1, 3 and 5, but UNR plants had significantly lower retention in Exp. 2. A combined analysis of all six experiments showed significantly lower retention in the UNR plants compared with conventionally spaced plants (Chapter 3).

Fruit retention vertically up the plant was not consistently affected by row spacing, and there was no indication that the UNR plants lost more early bolls than the conventionally spaced plants in Exps. 1 to 3. Retention was not consistently different between experiments at different positions on the plant. The UNR plants had significantly lower retention in cohort 1 compared with the conventionally spaced plants in Exp. 5 but not in the other three experiments. It was in the upper part of the plant that boll retention was consistently lower in the UNR plants compared to the conventionally spaced plants (i.e. cohort 3). Retention for cohort 4 was not significantly different between treatments, except for Exp. 2, probably due to the high variability between plants in this section of the plant.

Fruit distribution differed between row spacings (in all experiments except Exp. 5) with the UNR plants having a significantly higher proportion of mature bolls located in the bottom part (cohort 1) of the plant compared with conventionally spaced plants.

UNR plants in Exp. 5 had a higher proportion of mature bolls in cohort 2 compared with conventionally spaced plants.

While differences in environmental conditions between years of these experiments had a far greater effect on fruit retention than the difference between row spacings, the patterns with less fruit at higher nodes in the UNR plants are probably related to the differences in final node number in the UNR plants compared with conventionally spaced plants (Chapter 3). Jenkins *et al.* (1990a, b) found that fruit retention was related to main-stem node position. They found that greater than 70% of the total yield was on the central part of the plant (in their case – main stem nodes 9 to 14) (Jenkins *et al.* 1990b; Jenkins *et al.* 1990a). These nodes coincide with maximum leaf area in the canopy (Oosterhuis and Wullschleger 1988). They also have the largest leaves and are the highest suppliers of carbon to fruit, as leaves produced on lower nodes export a greater proportion of assimilates to root development (Constable 1981).

In previous studies high rates of shedding in the UNR treatments have been thought to be the most likely cause of delays in maturity in UNR cotton (Constable 1975; Baker 1976). However, the results of this study show that a loss of bolls on the lower fruiting branches in the UNR plants was not responsible, so other factors must be slowing the time to crop maturity. In contrast to losing bolls in the lower part of the plant and compensating later and perhaps delaying maturity, the UNR plants actually set a higher proportion of bolls in the lower part of the plant than the conventionally spaced plants. Other researchers have also found that boll distribution of plants in UNR crops is different to conventionally spaced crops. Clawson and Cothren (2002) found a higher percentage of boll were on nodes 6-10 and a significantly lower

proportion of bolls were on higher fruiting branches in UNR cotton compared with conventionally spaced cotton. Gerik *et al.* (1998) found that UNR cotton set a higher percentage of bolls on the lower branches in one year of their study but not in the other.

Lower fruit retention in the bottom part of the UNR plants did not occur in these experiments and hence did not cause delays in maturity. Lower retention of bolls on the higher nodes on the plant and a higher proportion of bolls set on the lower part of the plant indicate that early in the development of the plants under UNR conditions there was sufficient assimilate available to support boll growth, but later in plant development when the fruit on higher nodes were produced, the plant did not have sufficient resources to support these later bolls. This lower retention of later fruit is reflected by last effective flower (last flower that was retained until maturity), being a flower set a few days earlier in the UNR plants, which corresponded with the last boll opening a few days earlier in the UNR crop in Exp. 1 but not Exp. 5. This was due to slight differences in boll period between the two experiments. In Exp. 1 boll period was similar between treatments, however, in Exp. 5 boll period was a few days longer in the UNR treatment, which explains why there were no differences in maturity in Exp. 5 even though the last effective flower was set a few days earlier.

In each experiment, the UNR plants were smaller, with fewer fruiting sites and bolls per plant. A smaller plant with fewer fruiting sites, that retains early bolls and sheds later bolls was hypothesised to have earlier maturity than a larger plant that has more fruiting sites and retains more fruit higher (later) in the plant. However, this was not the case in this study comparing UNR and conventionally spaced plants. One explanation as to why a smaller plant does not mature earlier would be later initiation

of fruit. However, both UNR and conventionally spaced plants started fruiting at the same time. If boll period was consistently longer this would also explain lack of difference in the timing of crop maturity. However, boll period was only different for bolls on UNR plants compared with conventionally spaced plants in Exp. 5.

Boll distribution and timing can greatly affect the timing of crop maturity. The time for a crop to mature is variable and dependent on a range of factors. Fruiting began on the same node as the node of first fruiting branch was not different between row spacings (Chapter 3). In this chapter it has been shown that differences in the time to first square, retention, time to last effective flower (last flower that was retained to maturity) and boll period do not explain why maturity was not earlier in the UNR crops.

For a small plant that starts fruiting at the same time, finishes fruiting at the same time, retains it's early fruit and has no change in boll development time compared to a larger plant with more fruiting sites, the rate of site production must be different. Chapter 6 will examine whether there are differences in the rate of boll production (site production) in UNR plants compared with conventionally spaced plants and how any differences might influence maturity in the two row spacings. Unlike determinate crops, these development processes are not driven primarily by temperature and day length, but by the balance of demand for, and supply of, assimilates to the developing fruit and growing points (Bange and Milroy 2000). To help ascertain why any differences are occurring, the impact of carbon supply on site production will also be examined in Chapter 6. Smaller boll size (Chapter 3), lower retention and lower biomass accumulation (Chapter 4) in UNR plants indicate a reduction in assimilate

supply, which might also be contributing to the lack of differences in the maturity of the UNR crop compared to the conventionally spaced crop.

5.6 Conclusion

A smaller plant with fewer bolls did not set and mature these bolls over a shorter period than the larger plants in the conventionally spaced crop. There were few differences in the timing of the crop to reach development phases between row spacings, and the influence of the environment on differences in the pattern of retention in the crops had a greater impact than row spacing. UNR plants tended to have higher fruit retention at the bottom of the plant and less at the top of the plant compared with conventionally spaced plants. These differences in fruit distribution were likely due to differences in plant size. The lack of difference in maturity between plants in UNR and conventional treatments in this study cannot be explained by loss of early bolls or differences in time to reach crop development stages.

Chapter 6

Site production in UNR and conventionally spaced cotton

6.1 Aim

To identify differences in the rate of site production between UNR and conventionally spaced cotton and determine how those differences influence yield and maturity in UNR and conventionally spaced cotton.

6.2 Introduction

As cotton is an indeterminate plant there is no morphological limit to its size and development. As long as conditions are favourable, vegetative production of new main-stem and fruiting branches could continue indefinitely (Hearn and Constable 1984). However, the plant stops producing new leaves and fruiting sites (this stage is termed 'cut-out') due to the demand on the resource supply by developing bolls leaving none for the initiation of new fruiting sites (Mason 1922; Hearn 1994).

The time for a cotton crop to mature is dependent on a range of factors, but is ultimately determined by the time to fruit initiation (node of first fruiting branch and time to first square), the rate of boll production (main-stem and sympodial node production), boll growth (retention and boll size), the time to cessation of initiation of new bolls (cut-out) and the time from anthesis to maturity of those bolls retained (boll period) (Harland 1929; Richmond and Radwan 1962; Ray and Richmond 1966; Munro 1971)

In previous studies high rates of shedding in the UNR treatments have been thought to be the most likely cause of delays in maturity in UNR cotton (Constable 1975; Baker

1976). As Constable and Gleeson (1977) stated, "the success of narrow row spacing and other forms of crop manipulation aimed at rapid crop setting depends on the retention and rapid growth of early bolls". In this study, however, an examination of retention patterns in Chapter 5 showed that there was not a loss of bolls on the lower fruiting branches in the UNR plants, so other factors must be slowing the time to crop maturity. Node to first fruiting branch was not found to differ between row spacings in Chapter 3. In Chapter 5 it was also shown that time to first square, time to last effective flower (last flower that was retained to boll maturity) and boll period were not affected by row spacing and those measures did not explain why maturity was not earlier in the UNR crop.

Due to the effects of competition for light, water and nutrients between the higher numbers of plants in the UNR system, the development of individual plants may be different between the two row spacing treatments. Plants in the UNR system were shorter, with fewer nodes, fruiting sites and had fewer mature bolls per plant. However, contradictory to the response to UNR proposed by Lewis (1971), these smaller plants did not have earlier crop maturity.

Time to crop maturity in the experiments in this study does not appear to have been delayed through loss of early bolls, delayed time to cut-out or a longer boll period. This chapter will examine whether there are differences in the rate of fruit production through investigating main-stem and sympodial node (site) production in UNR plants compared with conventionally spaced plants and how any differences might influence the maturity of the two row spacings.

If there are differences in site production rates between UNR and conventionally spaced plants, this chapter will also examine the relationship between carbon supply and site production between the two row spacings.

6.3 Methods

6.3.1 Node production

Node production was compared between row spacing treatments to identify differences in site development. In Exps. 1, 2 and 5, nine plants per plot were tagged and monitored weekly to record node development. In the conventionally spaced plots these plants were in the same row but for UNR plots three plants in three parallel rows were monitored (row 1 – row adjacent to furrow; row 2 – adjacent to row 1; row 3 – adjacent to row 2 in centre of 2 m wide bed (Plate 3.1)). Plant height and number of main stem nodes were recorded. A node was recorded as present when the main stem leaf had unfolded. Cotyledons were counted as node zero (Figure 5.1).

6.3.2 Site production

To determine site development, four plants per plot were monitored in Exps. 1 and 5. Mapping was conducted twice weekly as it was possible to estimate events accurately a few days back in time by noting leaf, fruit or scar size and colour (Constable 1991). Vegetative sites were not recorded for this study. Four stages of fruit development were recorded for each main stem fruiting site:

- Date of squaring (flower bud) when the subtending leaf on the same node unfolded (Constable 1991).
- Date of anthesis.

- Date the fruit was shed if at all. On some occasions, a square was shed
 before it had been recorded as appearing.
- Date of boll opening when at least two sutures on the boll had cracked open.

To determine differences in fruiting site production and fruit retention over time at both an individual plant and at crop level between row spacing treatments, total sites produced, total fruit shed and total fruit present per plant were converted to a per m² basis using average plant number per plot. To enable a comparison with growth analyses of Exps. 1 and 5 in Chapter 4, site production, and the number of fruit shed and present were grouped into approximately 10-day intervals corresponding to the biomass harvests for Exps. 1 and 5.

6.3.3 Relationship between site production and available carbon production

To determine whether differences in site production were linked to carbon production, the relationship between the number of sites per plant was compared with total dry matter production (average per plant) using regression analysis. This relationship was compared for the period from first flower to cut-out as this is the time of peak demand from developing bolls (59 DAS to 118 DAS in Exp. 1 and 60 DAS to 112 DAS in Exp. 5). Before first flower, there is little demand from developing bolls and the slowing of site production rate before this time is likely to be due to other factors impacting on carbon supply, such as competition for light, water and nutrients. Cut-out generally occurs when supply of assimilates from the leaves equals demand from developing bolls and as there are no new sites after this time the crop can be considered "finished" as there are no new sites and negligible changes in total dry matter production after this time (Bange and Milroy 2000).

6.3.4 Statistical analyses

Analysis of variance (ANOVA) was used for comparing main-stem node and site production between row spacings at each date. Analysis of covariance was used to test for differences in the regressions between ln site production and ln total dry matter production between row spacings. All statistical analyses were conducted using Genstat® software. Unless stated otherwise significant differences were considered at 95% confidence intervals (P < 0.05).

6.4 Results

6.4.1 Main-stem node production

In Exp. 1 weekly main-stem node counts commenced at 35 DAS and there were no significant differences in the number of nodes per plant between row spacing treatments until 49 DAS when the conventionally spaced treatment had an average 9.2 nodes per plant and the UNR treatments 8.1 nodes per plant (P < 0.001) (Figure 6.1). From 49 DAS there were fewer nodes per plant in the UNR plants compared with the conventionally spaced plants and final node numbers were 18.7 for conventionally spaced and 14.8 for UNR plants.

In Exp. 2 weekly main-stem node counts commenced at 69 DAS and there were no significant differences in the number of nodes per plant between row spacing treatments until 89 DAS when the conventionally spaced treatment had an average 19.6 nodes per plant and the UNR treatments 16.8 nodes per plant (P = 0.046) (Figure 6.1). From 89 DAS there were fewer nodes per plant in the UNR plants compared with the conventionally spaced plants and final node numbers were 21.8 for conventionally spaced and 18.4 for UNR plants.

In Exp. 5 weekly main-stem node counts commenced at 59 DAS and there were no significant differences in number of nodes per plants between row spacing treatments until 72 DAS when the conventionally spaced treatment had an average 15.0 nodes per plant and the UNR treatments 13.6 nodes per plant (P = 0.003) (Figure 6.1). From 72 DAS there were fewer nodes per plant in the UNR plants compared with the conventionally spaced plants and final node numbers were 20.8 for conventionally spaced and 18.3 for UNR plants.

6.4.2 Site production, fruit shedding and number of fruit present

When site production, fruit numbers and shedding were analysed over time for Exps.

1 and 5 there were some distinct trends in the fruit production and shedding in UNR compared with the conventionally spaced treatments.

Site production, fruit shedding and number of fruit present per plant

In Exp. 1 site production per plant was significantly lower in the UNR plants compared with conventionally spaced plants from 69 DAS (P = 0.008) (Figure 6.2a). From 69 DAS the number of sites produced per plant was significantly lower in the UNR plants compared with conventionally spaced plants; new sites stopped being produced after 137 DAS in both row spacings. In Exp. 5 site production per plant was significantly lower in the UNR plants compared with conventionally spaced plants from 69 DAS (P = 0.014) (Figure 6.3a). From 69 DAS the number of sites produced per plant was significantly lower in the UNR plants compared with conventionally spaced plants; new sites stopped being produced after 134 DAS in both row spacings.

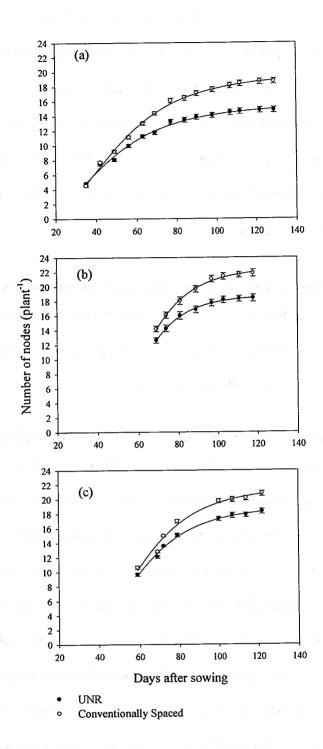


Figure 6.1 Mean number of main-stem nodes per plant for UNR and conventionally spaced treatments in Exps. 1 (a), 2 (b) and 5 (c). Error bars are two standard errors of the mean.

In Exp. 1 fruit shedding per plant was significantly lower in the UNR treatments from 109 DAS (P = 0.018) (Figure 6.2c). In Exp. 5 fruit shedding per plant was lower in the UNR treatments compared with the conventionally spaced treatments. This difference was significant at 78 DAS (P = 0.01) but not at 89 or 103 DAS. Shedding, however, continued to be numerically lower in the UNR treatments and was again significantly lower from 112 DAS (P = 0.044) (Figure 6.3c).

In Exp. 1 fruit present per plant was consistently numerically lower in the UNR plants compared with conventionally spaced plants; however, this difference was not significant except at 90, 96 and 109 DAS (P = 0.035; P = 0.014; P = 0.045 respectively) (Figure 6.2e). In Exp. 5 fruit present per plant was consistently numerically lower in the UNR treatments compared with the conventionally spaced treatments, this difference was significant from 69 DAS (P = 0.027) (Figure 6.3a).

Site production, fruit shedding and number of fruit present per m²

In Exp. 1 cumulative site production per m^2 was only significantly higher in the UNR treatments compared with conventionally spaced treatments at 81 DAS (P=0.044). However, average cumulative site production per m^2 was always higher in the UNR treatments and, except for 47 DAS and 69 DAS, was significant at the 90% confidence intervals (Figure 6.2b). In Exp. 5, average cumulative site production per m^2 was again consistently numerically higher in the UNR treatments compared with the conventionally spaced treatments. This difference, however, was only significant at 69 and 78 DAS (P=0.038; P=0.041 respectively) and at the 90% level at 89 DAS (P=0.055) (Figure 6.3b).

In Exp. 1 cumulative fruit shedding per m^2 was always higher in the UNR treatments. From 90 DAS this difference was significant at the 90% confidence intervals, but only for 96, 109, 118 and 137 DAS was P < 0.05 (Figure 6.2d). In Exp. 5 fruit shedding per m^2 was again consistently numerically higher in the UNR treatments compared with the conventionally spaced treatments; this difference was significant from 103 DAS (P < 0.05) (Figure 6.3d).

In Exp. 1, fruit present per m^2 was not significantly different between row spacings, however, it was consistently numerically higher in the UNR treatments, but only at 59, 81 and 90 DAS was P < 0.10 (Figure 6.3f). In Exp. 5, fruit present per m^2 was numerically higher in the UNR treatments compared with the conventionally spaced treatments until 112 DAS. From 112 DAS the conventionally spaced treatments had higher fruit present per m^2 than the UNR treatments (Figure 6.3f). These differences were not significant and only at 69 and 78 DAS was P < 0.10.

6.4.3 Relationship between site production and available carbon production

Regression analyses of sites per plant and total dry matter per plant showed there was a significant positive linear relationship between the number of sites produced and total dry matter per plant (Figure 6.4). This relationship was not significantly different between row spacings for Exps. 1 or 5 (P = 0.488; P = 0.968 respectively).

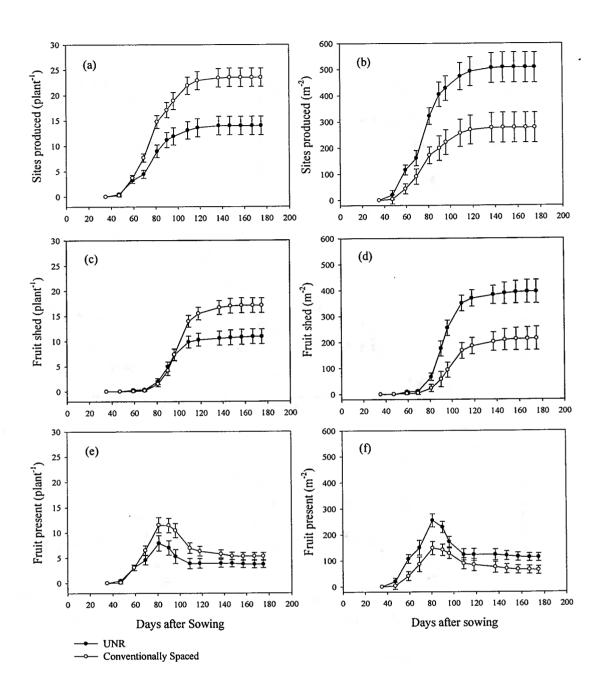


Figure 6.2 Cumulative site production per plant (a) and per m² (b), cumulative fruit shedding per plant (c) and per m² (d) and fruit present per plant (e) and per m² (f) at dates corresponding to biomass harvests in Exp. 1 for UNR and conventionally spaced treatments. Error bars are two standard errors of the mean.

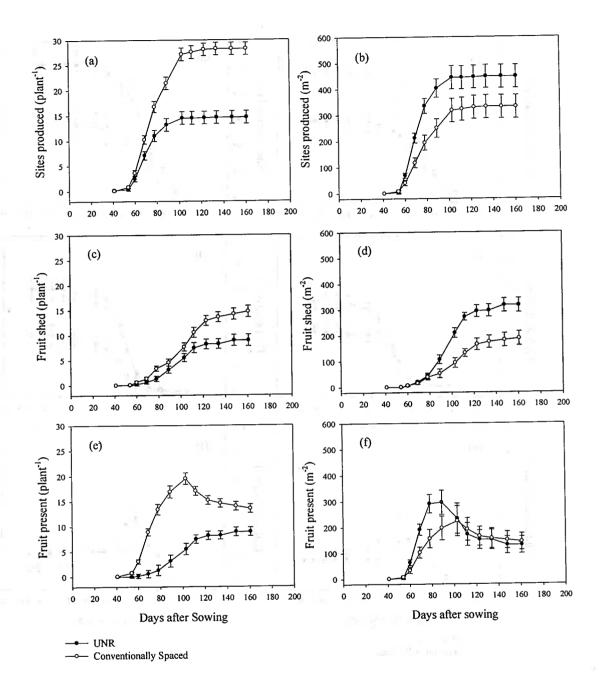


Figure 6.3 Cumulative site production per plant (a) and per m² (b), cumulative fruit shedding per plant (c) and per m² (d) and fruit present per plant (e) and per m² (f) at dates corresponding to biomass harvests in Exp. 5 for UNR and conventionally spaced treatments. Error bars are two standard errors of the mean.

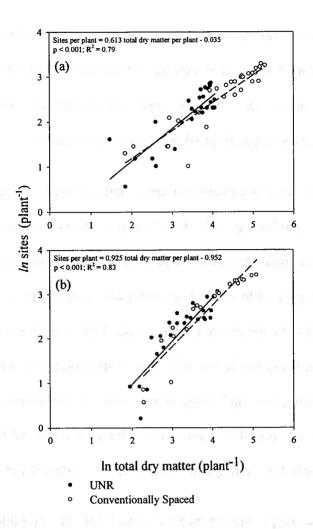


Figure 6.4 Relationship between sites and total dry matter per plant for UNR (solid line) and conventionally spaced (broken line) treatments in Exps. 1 (a) and 5 (b).

6.5 Discussion

Node production and site production was significantly slower in the UNR plants in the experiments from early in the growing season. Main-stem node production was less in the UNR crop even before site production was influenced by demand from developing fruit.

In Exp. 1 by 49 DAS node production was significantly less in the UNR plants compared with the conventionally spaced plants. This date corresponded to approximately first square appearance in the crop. In Exp. 2 node production in the UNR plants was significantly less than the conventionally plants from 69 DAS and 72

DAS in Exp. 5. This was between the appearance of the first square (flower bud) and anthesis (first flower) for those experiments; however, in both of those experiments the number of nodes per plant for UNR was numerically lower than for the conventionally spaced plants from when measurements started.

Site production in the UNR plants in Exps. 1 and 5 slowed around the same time as main-stem node production indicating that restrictions on the plants' ability to produce new sites and nodes occurred prior to flowering. Early competitive stress in UNR cotton is supported by Constable (1975) who found that the smaller boll size in his study was due to lower seed numbers per boll. Lower seed number per boll indicated that the stress restricting seed set must have occurred at flowering or earlier as flower bud formation and ovule fertilisation are important in determining the number of seeds per boll. Later stress would have been evident through impacts on seed size, lint per boll or fibre quality, which were not affected in Constable's study.

Slower node and site production meant that the UNR plants produced fewer bolls per plant over the same time period as the larger conventionally spaced plants. In Exp. 1 the UNR plants had produced only 13.1 sites before cut-out whereas in the same time period the conventionally spaced plants had produced 21.9 sites. In Exp. 5, the UNR plants produced 14.5 sites before cut-out compared with 27.1 in the conventionally spaced plants over the same period of time.

Shedding per plant was proportional to the number of sites per plant and the number of fruit present reflected this. In Exp. 1, the conventionally spaced plants had significantly more fruit present than the UNR plants between 96 and 109 DAS and numerically higher fruit for the rest of the season. In Exp. 5, this difference in fruit present per plant occurred much earlier with the conventionally spaced plants having

significantly more fruit per plant compared with the UNR plants from 69 DAS. In Chapter 5, the plants in the UNR crop had lower retention on the upper part of the plant compared with the conventionally spaced plants, but there was no difference in whole plant fruit retention in Exps 1 or 5.

Although the rate of site production and number of fruit present was lower in the UNR plants compared with conventionally spaced plants, the higher number of plants in the UNR crop led to higher numbers of fruit initiated per unit area with the number of sites per m² rapidly increasing from 47 DAS in Exp. 1 and 54 DAS in Exp. 5. Total number of sites per m² remained higher for the rest of the growing season, with cut-out occurring at about the same time in both row spacing treatments (approx. 103 DAS for Exp. 1 and 118 DAS for Exp. 5). The number of fruit shed was proportional to the number of sites produced and resulted in only slighter higher final boll numbers in Exp. 5. Most studies comparing site production between UNR and conventionally spaced cotton have compared site production on a unit area rather than a per plant basis, finding the UNR crops have greater early site production per unit area (Constable 1975); however, for early maturity to occur the rate of site production must be also be maintained on a per plant basis as well as at crop level.

The timing of increased shedding in the UNR crop occurred around the same time as increased shedding in the conventionally spaced crop and hence was probably linked to changes in environmental conditions or increased demand from developing bolls rather than any fundamental changes in the UNR crop causing differences in shedding.

The number of fruiting sites and the rate of production of fruiting sites are primarily dependent on vegetative growth and the ratios and position of monopodial to sympodial branches (Mauney 1986). Unlike determinate crops, these processes are not driven solely by temperature and day length, but by the balance of supply and demand of resources to the developing bolls and growing points (Bange and Milroy 2000). Slower site production and increased shedding of bolls indicates a restriction in assimilate supply in the UNR treatments in these experiments.

Regression analyses examining the relationship between the number of sites per plant and total dry matter per plant showed that the number of sites produced is highly dependent on the amount of dry matter per plant in both UNR and conventionally spaced crops. This relationship was not different between row spacings; however, site production was reduced in the UNR crop because each plant produced less total dry matter and hence slowed plant development.

These results explain why crop maturity of the UNR spaced cotton was not earlier than the conventionally spaced cotton. The rationale behind UNR cotton production being earlier and higher yielding than conventionally spaced cotton production relies on a few simple assumptions:

- plants in a high population would be smaller and set fewer bolls per plant;
- yield is maintained as a higher number of plants m⁻² compensates for smaller plants having fewer bolls per plant;
- a smaller plant has fewer fruiting branches and should cut-out earlier;

therefore, the fruit on the smaller plants should be set and mature over a shorter period than a larger more vegetative plant (Lewis 1971).

This study has shown that the plants were smaller due to competition for between plants restricting dry matter production per plant. As a result, site production in the UNR plants was slowed and fruit were set over the same time period as larger more vegetative plants in the conventionally spaced system resulting in cut-out occurring at the same time.

For UNR plants to mature earlier, early node production and fruiting site production must be produced at a similar rate to conventionally spaced crops. However, in these experiments the slowing of site and main-stem node production occurred early in plant growth. Node and site production were significantly slower before anthesis, which was strongly linked to dry matter production. In some other crops the opposite response to higher plant population has been found, with individual plant growth similar to that of lower plant populations during the early stages of growth leading to rapid early CGR with individual plant growth slowing as competition between plants slow growth (Loomis and Connor 1992).

6.5.1 Conclusion

Node and site production per plant was slower in the UNR plants compared to the conventionally spaced plants. Slower node and site production explains why the UNR plants did not mature earlier than conventionally spaced plants as the fruit were set over the same time period in both row spacings. Node production slowed before flowering indicating that restrictions on the plants' ability to produce new sites and nodes occurred prior to flowering. Site production was highly dependent on dry matter production and site production was reduced in the UNR crop because each plant produced less total dry matter and hence slowed plant development.

Chapter 7

The physiological determinants of yield and maturity in UNR cotton General discussion and concluding remarks

There is strong interest to develop cotton production systems that reduce the time from planting to harvest without a yield penalty. In addition to avoiding cool temperatures, reducing the time to maturity may also lead to savings in irrigation water and production costs.

Ultra-narrow row (UNR) cotton, a production system with rows spaced less than 40 cm apart, has been proposed as a system for earlier maturity without substantial yield loss (Low and McMahon 1973). The rationale for ultra-narrow row production being earlier and higher yielding than conventionally spaced cotton (1 m row spacing) is relatively simple. Plants grown in a high population should be smaller and set fewer fruit (bolls) per plant (Lewis 1971). Yield should be maintained as a higher plant population compensates for smaller plants having fewer bolls per plant (Lewis 1971). A smaller plant, with fewer bolls should mature earlier than a larger, more vegetative plant as the bolls are set earlier on the lower parts of the plant (Lewis 1971). The closely spaced cotton closes the canopy faster than conventionally spaced cotton, leading to greater light interception earlier in the season (Kerby *et al.* 1996b; Kreig 1996).

These assumptions, however, have not been consistently met in trials comparing UNR and conventionally spaced rows in Australia and the United States of America (Constable 1977b; Constable 1977a; Jost and Cothren 2000b; Jost and Cothren 2000a;

Jost and Cothren 2001). In Australia UNR cotton is grown commercially in high yielding, high-input systems in areas with a shorter growing season. This study was a first step in understanding the performance of cotton in UNR production systems in Australia, by comparing its growth, development and yield to conventionally spaced high-input production systems. There was limited understanding of cotton's growth response to different row configurations in the Australian production environment. Research into UNR in Australian cotton production systems has been limited with few studies into the detailed physiological responses of cotton to high plant population UNR production systems (Low and McMahon 1973; Hearn and Hughes 1975; Constable 1977b; Constable 1977a). Yield and maturity did not differ significantly between row spacings in any of the six experiments in this study. However, yield was numerically higher in the UNR crop in all of the experiments and the combined analysis showed that the mean lint yield of the UNR treatments was 15.9% higher than the conventionally spaced treatments. In this chapter, the differences found in the growth and development of UNR cotton compared with conventionally spaced cotton will be summarised, the influence on yield and maturity of these differences will be discussed and opportunities to optimise yield and maturity of UNR cotton will be considered. Contrary to Lewis' (1971) rationale for earliness in UNR, a smaller plant with fewer bolls did not set and mature these bolls over a shorter time period than the larger plants in the conventionally spaced crop.

UNR plants were smaller, had fewer fruiting sites and bolls per plant. This change in

plant architecture in response to narrow row spacings and higher plant populations

had been found in other studies (Jost and Cothren 2001; Vories et al. 2001; Marois et al. 2004; Nichols et al. 2004).

Maturity was not influenced by differences in the time to reach crop development stages between row spacings or by loss of early bolls in the UNR plants. Node of first fruiting branch did not differ between row spacings. Time to first square, retention, time to last effective flower (last flower that was retained to boll maturity) and boll period were also not consistently different between row spacing treatments, which was consistent with maturity not occurring any earlier in the UNR crop.

Loss of early bolls can delay maturity, but there was no indication of consistent differences in boll loss in the lower part of the plants between row spacings. In contrast to losing bolls in the lower part of the plant and compensating later and perhaps delaying maturity, the UNR plants actually set a higher proportion of bolls in the lower part of the plant than the conventionally spaced plants. It was in the upper part of the plant that boll retention was consistently lower in the UNR plants compared to the conventionally spaced plants. The timing of shedding in the UNR crop occurred around the same time as increased shedding in the conventionally spaced crop. The percentage of total fruit shed was higher in the UNR crop, indicating that shedding events occurred at the same time in both crops. Hence, the loss of fruit was probably linked to changes in environmental conditions or increased demand from developing bolls rather than any fundamental changes in the UNR crop causing differences in shedding. In previous studies, high rates of shedding in the UNR treatments have been thought to be the most likely cause of delays in maturity in UNR cotton (Constable 1975; Baker 1976).

For UNR plants to mature earlier, early node production and fruiting site production must occur at a similar rate to conventionally spaced crops. However, in these experiments the slowing of site and main-stem node production occurred from early in plant growth with node and site production being significantly slower before anthesis. This was strongly linked to dry matter production per plant.

Table 7.1 outlines node production, site production and shedding and how this relates to the percentage of yield present over the growing season for Exp. 1. Exp. 5 had similar development patterns as Exp. 1 (data not shown).

Node production and site production were significantly slower in the UNR plants in the experiments from early in the growing season (Table 7.1 and Figures 6.1 to 6.3). Site production in the UNR plants in Exps. 1 and 5 slowed around the same time as main-stem node production, indicating that restrictions on the ability to produce new sites and nodes occurred prior to flowering (Table 7.1 and Figures 6.1 to 6.3). Early competitive stress in UNR cotton is supported by findings from the study of Constable (1975), who found that the smaller boll size was due to lower seed numbers per boll. The lower seed numbers per boll indicated that the stress restricting seed set must have occurred at flowering or earlier as flower bud formation and ovule fertilisation are important in determining the number of seeds per boll. Later stress would have been evident through effects on seed size, lint per boll or fibre quality, which were not affected in Constable's study.

Slower node and site production meant that the UNR plants produced fewer bolls per plant over the same time period as the larger conventionally spaced plants (Table 7.1). The proportion of the realised yield set over the growing season was almost identical for the two row spacings (Figure 7.1a). Overall fruit retention was generally lower in

the UNR plants compared to the conventionally spaced plants. For the example in Table 7.1 lower retention between 90 and 110 DAS meant that the UNR crop was slower in yield development for this period (Figure 7.1a). Boll size was smaller in most of the experiments in this study. Smaller boll size is commonly reported in UNR studies (Baker 1976; Constable 1977a; Bednarz *et al.* 1999; Witten and Cothren 2000; Boquet 2005) although not always (Hawkins and Peacock 1973; Gerik *et al.* 1999).

Figure 7.1b shows hypothetical yield development of UNR when site production and boll size are assumed to be equal to that in of the conventionally spaced plants in Exp. I but with differences in final node number retained. Simulating this scenario where the UNR plants are smaller with fewer bolls per plant, but with the same boll growth and development as conventionally spaced plants, would lead to earlier maturity in the UNR crop as suggested by Lewis (1971). In this scenario, 60% of final yield was present eight days earlier and 90% of final yield was present 14 days earlier in the UNR crop compared to the conventionally spaced crop. Hence, for UNR plants to cutout and mature earlier, early node production and fruiting site production must occur at a similar rate to conventionally spaced crops and boll size must be similar. However, in the experiments in this study the slowing of site and main-stem node production occurred from early in plant growth with node and site production being significantly slower before anthesis (Table 7.1).

Although the rate of site production and number of fruit present per plant was lower in the UNR crop compared with conventionally spaced plants, the greater number of plants in the UNR crop led to a greater number of fruit initiated per unit area with the number of sites per m². Most studies comparing site production between UNR and conventionally spaced cotton have compared site production on a unit area rather than

a per plant basis, finding the UNR crops have greater early site production per unit area (Constable 1975). However, for this to lead to increased yield or early maturity the rate of site production must be greater on a per plant basis as well as at crop level.

The number of sites produced was highly dependent on the amount of dry matter per plant in both UNR and conventionally spaced crops. This relationship did not differ between row spacings. Site production was reduced in the UNR crop because each plant produced less total dry matter, and hence slowed plant development.

The three experiments in 2001-02, 2002-03 and 2003-04 showed a trend to higher yield in the UNR treatment and a combined analysis showed an average 13.1% increase in UNR yield compared to conventional spacing across the three experiments. While early season crop growth, fruit production and light interception tended to be higher in the UNR crop this did not translate into greater final crop biomass production. There was a trend to greater partitioning of carbohydrates to fruit in the UNR crop. Final boll numbers per m² were higher in the UNR treatments compared to the conventionally spaced treatments. This was accompanied by a decrease in boll size. However, the 9% reduction in boll size in the UNR treatments was more than compensated for by the 21% increase in boll number. Other studies have also found that higher plant populations compensated for smaller plant size, and total boll number was usually the same or slightly higher (Witten and Cothren 2000).

Table 7.1 Average node production, site production, retention, boll size and proportion of yield over the growing season for UNR and conventionally spaced plants in Exp. 1

Days after sowing	Number of nodes per plant		of nodes per plant Number of sites per plant		Re	Retention (%) (boll dr		Boll size y matter g boll-1)	Yield per plant (g) (sites x retention x boll size)		Proportion of yield present (%)	
	UNR	Conventionally Spaced	UNR	Conventionally Spaced	UNR	Conventionally Spaced	UNR	Conventionally Spaced	UNR	Conventionally Spaced	UNR	Conventionally Spaced
0	0	0										
10	0	0										
20	1	1										
30	4	3										
40	7	7					=		0.00	0.01	0.01	0.01
50	9	10	0.90	1.29	99	100	0.00	0.00	0.00	0.01	0.01	0.12
60	11	12	2.67	3.92	98	99	0.02	0.03	0.05	0.11		1.13
70	12	15	5.63	8.53	93	97	0.09	0.12	0.47	1.03	1.36	
80	13	16	8.76	13.77	79	91	0.33	0.45	2.28	5.63	6.58	6.21
90	14	17	11.07	17.88	53	75	1.00	1.33	5.80	17.76	= 16.70	19.58
100	14	18	12.37	20,30	33	52	2.27	3.00	9.26	31.81	26.67	35.06
110	14	18	13.16	21.81	25	36	4.36	5.72	14.16	44.37	40.79	48.91
120	15	19	13,59	22.63	23	29	6.57	8.61	20.39	57.21	58.72	63.06
130	15	19	13.82	23.09	23	28	8.23	10.79	25.89	69.23	74.57	76.30
140	15	19	13.95	23.34	23	28	9.22	12.12	29.63	77.96	85.34	85.93
150	15	19	14.02	23.48	23	28	9.73	12.81	31.74	83.10	91.40	91.59
160	15	20	14.07	23.58	23	28	10.03	13.21	33.08	86.47	95.27	95.31
170	15	20	14.10	23.64	24	28	10.19	13.42	33.85	88.44	97.48	97.48
180	15	20	14.12	23.67	24	28	10.27	13.54	34.30	89.61	98.78	98.77
		20	14.13	23.70	24	28	10.32	13.60	34.57	90.31	99.55	99.55
190 200	15 15	20	14.13	23.71	24	28	10.34	13.64	= 34.72	90.73	100.00	100.00

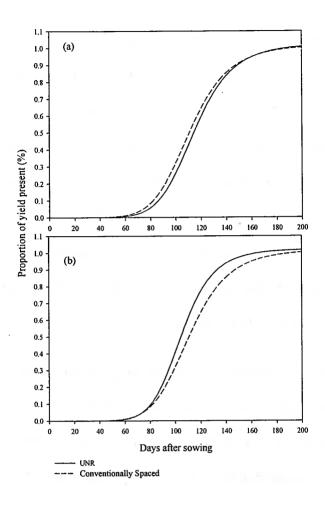


Figure 7.1 Proportion of yield present over the growing season in UNR and conventionally spaced treatments in Exp. 1. (a) shows the actual yield present (b) presents a calculation where site production and boll growth is the same in both row spacings but the UNR plants final node number and boll size remains the same (14 nodes per plant and 10 g boll¹ as presented in Table 7.1)

The major factors affecting crop growth and development of the UNR crop in this study were differences between the two row spacings in light interception and conversion efficiency. The higher crop light extinction coefficient (k) in the UNR crop, and hence, greater light capture at low LAI, did not increase final total biomass production, most likely because of a compensating reduction in RUE. Higher k generates less uniform light distribution in the canopy so that overall conversion efficiency is reduced, especially at high LAI. The higher k in UNR crops would be advantageous to light capture in early canopy development and generate greater earlier crop growth, thus supporting early fruit

production, leading to the higher early fruit numbers at the crop level in the UNR crop (Figure 6.2 and Figure 6.3). However, the associated reduction in RUE would generate reduced crop growth at the higher LAI found after canopy closure, thus reducing retention of later fruit later in the UNR crop. Hence, the similar total final biomass of the two systems is a consequence of two compensating factors. Limitations in assimilates to individual plants in the UNR crop due to lower RUE and increased shading of the lower part of the canopy may also explain why boll size was smaller in the UNR treatments as boll size is related closely to carbohydrate supply, especially from nearby leaves. At a crop level, even though boll size was reduced in the UNR crop, the setting of more fruit may have stimulated enhanced partitioning to fruit.

As the UNR and conventionally spaced treatments have different spatial arrangements, differences in the light extinction coefficient (k) may be related to differences in canopy structure. Most of the light in the UNR canopy was intercepted in the top part of the canopy with less penetrating through the canopy. Although peak LAI was not significantly different in the three experiments, LAI continued to develop in the UNR crop after maximum light interception had been reached, whereas in the conventionally spaced treatments, peak LAI was more aligned with maximum light interception. This means that the UNR crop was continuing to develop leaves that were not increasing light interception, and were shading earlier leaves, which probably contributed to reduced RUE. Elevated LAIs can be detrimental if the lower canopy receives excessive shading reducing assimilate production to support boll development (Hake et al. 1996). Jost and Cothren (2001) found that crop maturity was earlier, and yield was higher in UNR cotton crop in the year that no excessive vegetative growth occurred. Constable (1975) found that higher early leaf area did not favour rapid crop setting and that control of vegetative growth might be necessary to achieve earliness.

Both a reduction in boll size and the slowing of site production indicates that competition for resources occurs very early in the growth of UNR cotton. Many of the measurements made in this study began at first square, by which time individual plant growth had already begun to slow in response to competition between plants. Further research is needed into whether increasing inputs or making other modifications early in the season could prevent the slowing of growth and development in the UNR system, or whether the plants are responding to other indicators such as root competition or changes in the light environment and adjusting their growth on detection of neighbouring plants (Ballare and Casal 2000). Cotton (Gossypium spp.) is a perennial plant found in the wild in isolated or in very open types of vegetation and its growth is highly plastic in response to its environment (Fryxell 1986). However, this adaptation may result in slowing growth in response to competition from other plants much more quickly than found in other determinant, annual crops.

This study has shown that in UNR crops competition between plants restricts dry matter production per plant very early in the crop cycle and as a result site production in the UNR plants is slowed and the fewer fruit per plant are set over the same time period as the greater number of fruit on the larger, more vegetative plants in the conventionally spaced system.

7.1 Concluding Remarks

This study found no differences in crop maturity and an increase in yield in UNR spaced cotton compared with conventionally spaced cotton in high-input production systems in Australia.

The UNR plants in this study were smaller and set fewer bolls but maintained or increased yield through a higher plant population; however, a smaller plant with fewer fruiting

branches did not cut-out earlier and the fewer fruit on the smaller plant were set and matured over the same time period as the greater number of fruit on the larger, more vegetative plant in the conventionally spaced treatments. These effects were related to competition between plants restricting dry matter production per plant and changing its distribution in the crop cycle in the UNR system via modifications to light interception and radiation use efficiency. The plant growth restriction occurs early in the life cycle before anthesis and leads to smaller boll size and lower overall retention in the UNR plants. However, early fruit production is enhanced at a crop level, most likely because of increased light interception and plant growth early in the crop cycle leading to enhanced partitioning to fruit in the UNR crop.

For UNR plants to mature earlier, early node production and fruiting site production must occur at a similar rate to conventionally spaced crops. However, in these experiments the slowing of site and main-stem node production occurred from early in the crop cycle with node and site production being significantly slower before anthesis. Further research is needed into whether increasing inputs early in the season will prevent slower growth and development in UNR crop grown under high-input conditions, or whether the plants are responding to other indicators such as root competition or changes in the light environment that might lead them to adjust their growth on detection of neighbouring plants. In the case of the latter, either genetic or environmental manipulations might be required to influence plant growth and development in UNR crops grown under high-input conditions.

References

Allen C.T., Kennedy C., Robertson B., Kharboutli M., Bryant K., Capps C., Earnest L. (1998) Potential of ultra narrow row cotton in Southeast Arkansas. *Proceedings of the Beltwide Cotton Conferences* 2, 1403-1406.

Andrade F.H., Calvino P., Cirilo A., Barbieri P. (2002) Yield responses to narrow rows depend on increased radiation interception. *Agronomy Journal* 94, 975-980.

Ashley D., Doss B., Bennett O. (1965) Relation of cotton leaf area index to plant growth and fruiting. *Agronomy Journal* 57, 61-64.

Atwell S., Perkins R., Guice B., Stewart W., Harden J., Odeneal T. (1996) Essential steps to successful ultra narrow row cotton production. *Proceedings of the Beltwide Cotton Conferences* 2, 1210-1211.

Atwell S.D. (1996) Influence of ultra narrow row on cotton growth and development. *Proceedings of the Beltwide Cotton Conferences* 2, 1187-1188.

Bader M.J., Culpepper S. (2002) Comparison of conventional and UNR cotton production systems. *Proceedings of the Beltwide Cotton Conferences*, CDROM.

Baker D.N., Hesketh J.D., Duncan W.G. (1972) Simulation of growth and yield in cotton. 1. Gross photosynthesis, respiration, and growth. *Crop Science* 12, 431-435.

Baker S.H. (1976) Response of cotton to row patterns and plant populations. *Agronomy Journal* **68**, 85-88.

Ballare C.L., Casal J.J. (2000) Light signals perceived by crop and weed plants. Field Crops Research 67, 149-160.

Bange M.P., Carberry P.S., Marshall J., Milroy S.P. (2005) Row configuration as a tool for managing rain-fed cotton systems: review and simulation analysis. *Australian Journal of Experimental Agriculture* 45, 65-77.

Bange M.P., Milroy S.P. (2000) Timing of crop maturity in cotton: impact of dry matter production and partitioning. *Field Crops Research* 68, 143-155.

Bange M.P., Milroy S.P. (2004) Growth and dry matter partitioning of diverse cotton genotypes. Field Crops Research 87, 73-87.

Basinski J.J., Wetselaar R., Beech D.F., Evenson J.P. (1975) Nitrogen supply, nitrogen uptake and cotton yields. *Cotton Growing Review* 52, 1-10.

Bednarz C.W., Baker S.H., Brown S.M., Bridges D. (1998) Effects of plant population on growth and development of cotton in South Georgia. *Proceedings of the Beltwide Cotton Conferences* 2, 1450-1450.

Bednarz C.W., Bridges D.C., Brown S.M. (2000) Analysis of cotton yield stability across population densities. Agronomy Journal 92, 128-135. Bednarz C.W., Brown S.M., Bader M.J. (1999) Ultra narrow row cotton research in Georgia. Proceedings of the Beltwide Cotton Conferences 1, 580-580. Bell P.F., Boquet D.J., Millhollon E., Moore S., Ebelhar W., Mitchell C.C., Varco J., Funderburg E.R., Kennedy C., Breitenbeck G.A., Craig C., Holman M., Baker W., McConnell J.S. (2003) Relationships between leaf-blade nitrogen and relative seedcotton yields. Crop Science 43, 1367-1374. Benedict C.R. (1984) Physiology. In 'Cotton, Agronomy Monograph No. 24'. (Eds RJ Kohel and CF Lewis) pp. 151-200. (American Society of Agronomy: Madison, WI) Benedict C.R., Kohel R.J. (1975) Export of ¹⁴C-assimilates in cotton leaves. Crop Science **15**, 367-372. Best E.C., Riney J.B., Krieg D.R. (1997) Factors affecting source-sink relations in cotton. Proceedings of the Beltwide Cotton Conferences 2, 1387-1389. Bhatt J.G., Ramanujam T., Rao M.R.K., Nathan A.R.S. (1982) A unified hormonutritional concept of boll shedding in cotton. Turrialba 32, 59-65. Board J.E., Harville B.G. (1992) Explanations for greater light interception in narrow-vs wide-row soybean. Crop Science 32, 198-202. Board J.E., Harville B.G. (1993) Soybean yield component responses to a light interception gradient during the reproductive period. Crop Science 33, 772-777. Board J.E., Harville B.G., Saxton A.M. (1990) Narrow-row seed-yield enhancement in determinate soybean. Agronomy Journal 82, 64-68. Bondada B.R., Oosterhuis D.M., Norman R.J., Baker W.H. (1996) Canopy photosynthesis, growth, yield, and boll ¹⁵N accumulation under nitrogen stress in cotton. Crop Science 36, 127-133. Boquet D.J. (2005) Cotton in ultra-narrow row spacing; plant density and nitrogen fertilizer rates. Agronomy Journal 97, 279-287. Boquet D.J., Koonce K.L., Walker D.M. (1982) Selected determinate soybean cultivar yield response to row spacings and plant populations. Agronomy Journal 74, 136-138. Bridge R., Meredith W., Chism J. (1973) Influence of planting method and plant population on cotton (Gossypium hirsutum L.). Agronomy Journal 65, 104. Briggs R.E. (1980) Effect of the plant regulator Pix on cotton in Arizona. Proceedings of the Beltwide Cotton Conferences, 32-32. Brown H.B., Osborn J.O. (1958) 'Cotton.' (McGraw-Hill: New York)

Brown K. (1971) Plant density and yield of cotton in Northern Nigeria. Cotton Growing Review 48, 255-266. Burch T.A. (1988) Selection of varieties, row spacings and plant populations for earliness. Proceedings of the Beltwide Cotton Conferences, 20-23. Burmester C.H. (1996) Status of ultra narrow row research in the Southeast. Proceedings of the Beltwide Cotton Conferences 1, 67-68. Buxton D., Briggs R., Patterson L., Watkins S. (1977) Canopy characteristics of narrowrow cotton as influenced by plant density. Agronomy Journal 69, 929-933. Buxton D., Patterson L., Briggs R. (1979) Fruiting pattern in narrow row cotton. Crop Science 19, 17-22. Cathey G.W., Meredith Jr W.R. (1988) Cotton response to planting date and mepiquat chloride. Agronomy Journal 80, 463-466. Cawley N., Edmisten K., Wells R., Stewart A. (1999) Evaluation of ultra narrow row cotton in North Carolina. Proceedings of the Beltwide Cotton Conferences 1, 558-559. Cawley N., Edmisten K.L., Stewart A.M., Wells R. (1998) Evaluation of ultra narrow row cotton in North Carolina. Proceedings of the Beltwide Cotton Conferences 2, 1402-1403. Charles-Edwards D.A., Doley D., Rimmington G.M. (1986) 'Modelling Plant Growth and Development.' (Academic Press: Sydney) Charles-Edwards D.A., Lawn R.J. (1984) Light interception by grain legume row crops. Plant, Cell and Environment 7, 247-251. Clawson E.L., Cothren J.T. (2002) Influence of row spacing and nitrogen rate on earliness components and yield of cotton. Proceedings of the Beltwide Cotton Conferences, CDROM. Coleman J.S., McConnaughay K.D.M., Ackerly D.D. (1994) Interpreting phenotypic variation in plants. Trends in Ecology and Evolution 9, 187-191. Constable G.A. (1975) Growth, development and yield of cotton as influenced by cultivar and row spacing. Masters thesis, University of Sydney. Constable G.A. (1976) Temperature effects on the early development of cotton. Australian Journal of Experimental Agriculture and Animal Husbandry 16, 905. Constable G.A. (1977a) Narrow row cotton in the Namoi Valley 1. Growth, yield and quality of four cultivars. Australian Journal of Experimental Agriculture and Animal Husbandry 17, 135-142. Constable G.A. (1977b) Narrow row cotton in the Namoi Valley 2. Plant population and row spacing. Australian Journal of Experimental Agriculture and Animal Husbandry 17, 143-147.

Constable G.A. (1981) Carbon fixation and distribution in cotton: implications of single leaf measurements to plant performance. PhD thesis, The Australian National University.

Constable G.A. (1986) Growth and light receipt by mainstem cotton leaves in relation to plant density in the field. *Agricultural and Forest Meteorology* 37, 279-292.

Constable G.A. (1991) Mapping the production and survival of fruit on field-grown cotton. *Agronomy Journal* 83, 374-378.

Constable G.A., Gleeson A.C. (1977) Growth and distribution of dry matter in cotton (Gossypium hirsutum L.). Australian Journal of Agricultural Research 28, 249-256.

Constable G.A., Rawson H.M. (1980a) Carbon production and utilization in cotton: inferences from a carbon budget. *Australian Journal of Plant Physiology* 7, 539-553.

Constable G.A., Rawson H.M. (1980b) Photosynthesis, respiration and transpiration of cotton fruit. *Photosynthetica* 14, 557-563.

Constable G.A., Rawson H.M. (1982) Distribution of ¹⁴C label from cotton leaves: consequences of changed water and nitrogen status. *Australian Journal of Plant Physiology* 9, 735-747.

Constable G.A., Rochester I.J., Daniells I.G. (1992) Cotton yield and nitrogen requirement is modified by crop rotation and tillage method. Soil Tillage Research 23, 41-59.

Constable G.A., Rochester I.J., Hodgson A.S. (1990) A comparison of drip and furrow irrigated cotton on a cracking clay soil 1. Growth and nitrogen uptake. *Irrigation science* 11, 137-142.

Constable G.A., Shaw A.J. (1988) Temperature requirements for cotton. Agfact P5.3.5. Division of Plant Industries, New South Wales Department of Agriculture and Fisheries.

Costa J., Oplinger E., Pendleton J. (1980) Response of soybean cultivars to planting patterns. *Agronomy Journal* 72, 153-156.

Cothren J.T. (1999) Physiology of the cotton plant. In 'Cotton: Origin, History, Technology, and Production'. (Eds WC Smith and JT Cothren) pp. 207-268. (John Wiley & Sons, Inc: New York)

Cotton Australia (2005) Cotton Australia Fact Sheet Book. http://www.cottonaustralia.com.au/factSheets/resources/Fact%20Sheet%20Book.pdf Accessed 20/09/2005, PDF. Cotton Australia

CSD (2000) '2000 Variety Guide.' (Cotton Seed Distributors: Wee Waa)

Curley R.G. (1982) Long term study reaffirms yield increases of narrow row cotton San Joaquin Valley, California. *California Agriculture* 36, 8-10.

Delaney D.P., Monks C.D. (2002) Plant populations and planting dates for UNR cotton. *Proceedings of the Beltwide Cotton Conferences*, CDROM.

Donald C.M., Hamblin J. (1976) The biological yield and harvest index of cereals as agronomic and plant breeding criteria. *Advances in Agronomy* 28, 361-405.

Dowling D. (2002) 2001-02 Season. The Australian Cottongrower Cotton Yearbook 2002, 4-5.

Dowling D. (2003) 2002-03 Season. The Australian Cottongrower Cotton Yearbook 2003, 4-5.

Dowling D. (2004) 2003-04 Season. The Australian Cottongrower Cotton Yearbook 2004, 4-5.

Duncan W.G. (1986) Planting patterns and soybean yields. Crop Science 26, 584-588.

Duncan W.G., Loomis R.S., Williams W.A., Hanau R. (1967) A model for simulating photosynthesis in plant communities. *Hilgardia* 38, 181-205.

Eaton F.M. (1955) The physiology of the cotton plant. *Annual Review of Plant Physiology* 6, 299-328.

Eaton F.M., Ergle D.R. (1954) Shade and defoliation on carbohydrate levels and growth, fruiting and fibre properties in cotton. *Plant Physiology, Lancaster* **29**, 39-49.

Ehleringer J.R., Hammond S.D. (1987) Solar tracking and photosynthesis in cotton leaves. *Agricultural and Forest Meteorology* 39, 25-35.

Ehlig C.F., LeMert R.D. (1973) Effects of fruit load, temperature, and relative humidity on boll retention of cotton. *Crop Science* 13, 168-171.

Elgi D.B., Guffy R.D., Heitholt J.J. (1987) Factors associated with reduced yield of delayed plantings of soybean. *Journal of Agronomy and Crop Science* 159, 439-442.

Evans J.R. (1989) Photosynthesis and nitrogen relationships in leaves of C₃ plants. *Oecologia* 78, 9-19.

Fernandez C.J., McInnes K.J., Cothren J.T. (1996) Water status and leaf area production in water- and nitrogen-stressed cotton. *Crop Science* 36, 1224-1233.

Fitt G.P. (1994) Cotton pest management: part 3. An Australian perspective. *Annual Review of Entomology* 39, 543-562.

Flenet F., Kiniry J.R., Board J.E., Westgate M.E., Reicosky D.C. (1996) Row spacing effects on light extinction coefficients of corn, sorghum, soybean, and sunflower. *Agronomy Journal* 88, 185-190.

Forcella F., Westgate M.E., Warnes D.D. (1992) Effects of row width on herbicide and cultivation requirements in row crops. American Journal of Alternative Agriculture 7, 161-167. Fowler J.L., Ray L.L. (1977) Response of two cotton genotypes to five equidistant spacing patterns. Agronomy Journal 69, 733-744. Fowler J.T., Jr., Murdock E.C., Staples J.T., Jr., Toler J.E. (1999) Weed control in ultra narrow row roundup ready cotton. Proceedings, Southern Weed Science Society 52, 32. Fryxell P.A. (1986) Ecological adaptations of Gossypium species. In 'Cotton Physiology, No. 1'. (Eds JR Mauney and JM Stewart) pp. 1-8. (The Cotton Foundation: Memphis) Galanopoulou-Sendouka S., Sficas A., Fotiadis N., Gagianas A., Gerakis P. (1980) Effect of population density, planting date, and genotype on plant growth and development of cotton. Agronomy Journal 72, 347-353. Geoscience Australia (2005) Basic outline of Australia with state borders and capital city locations. http://www.ga.gov.au/image cache/GA5566.pdf Accessed 02/02/2006, PDF. Geoscience Australia Gerik T.J., Jackson B.S., Stockle C.O., Rosenthal W.D. (1994) Plant nitrogen status and boll load of cotton. Agronomy Journal 86, 514-518. Gerik T.J., Lemon R.G., Abrameit A., Valco T.D., Steglich E.M., Cothren J.T., Pigg J. (2000) Using ultra-narrow rows to increase cotton production. Proceedings of the Beltwide Cotton Conferences 1, 653-653. Gerik T.J., Lemon R.G., Faver K.L., Hoelewyn T.A., Jungman M. (1998) Performance of ultra-narrow row cotton in Central Texas. Proceedings of the Beltwide Cotton Conferences 2, 1406-1409. Gerik T.J., Lemon R.G., Steglich E.M. (1999) Ultra-narrow row cotton performance under drought conditions. Proceedings of the Beltwide Cotton Conferences 1, 581-581. Goodman A. (1955) Correlation between cloud shade and shedding in cotton. Nature 176, 39. Graterol Y.E., Elmore R.W., Eisenhauer D.E. (1996) Narrow-row planting systems for furrow-irrigated soybean. Journal of Production Agriculture 9, 546-553. Guinn G. (1974) Abscission of cotton floral buds and bolls as influenced by factors affecting photosynthesis and respiration. Crop Science 14, 291-293. Guinn G. (1982) Causes of square and boll shedding in cotton. U.S. Dept. of Agriculture

Guinn G. (1985a) Abscisic acid and cutout in cotton. Plant Physiology 77, 16-20.

Technical Bulletin No. 1672.

Guinn G. (1985b) Fruiting of cotton. III. Nutritional stress and cutout. Crop Science 25, 981-985. Guinn G. (1998) Causes of square and boll shedding. Proceedings of the Beltwide Cotton Conferences 2, 1355-1364. Guinn G., Brummett D.L. (1989) Fruiting of cotton. IV. Nitrogen, abscisic acid, indole-3acetic acid and cutout. Field Crops Research 22, 257-266. Guinn G., Brummett D.L. (1993) Leaf age, decline in photosynthesis, and changes in abscisic acid, indole-3-acetic acid, and cytokinin in cotton leaves. Field Crops Research **32**, 269-275. Guinn G., Mauney J.R. (1984a) Fruiting of cotton. I. Effects of moisture status on flowering. Agronomy Journal 76, 90-94. Guinn G., Mauney J.R. (1984b) Fruiting of cotton. II. Effects of plant moisture status and active boll load on boll retention. Agronomy Journal 76, 94-98. Guinn G., Mauney J.R., Fry K.E. (1981) Irrigation scheduling and plant population effects on growth, bloom rates, boll abscission, and yield of cotton. Agronomy Journal 73, 529-534. Gwathmey C.O. (1996) Ultra-narrow row cotton research in Tennessee. Proceedings of the Beltwide Cotton Conferences 1, 68-68. Gwathmey C.O. (1998) Reaching the objectives of ultra-narrow row cotton. Proceedings of the Beltwide Cotton Conferences 1, 91-92. Gwathmey C.O., Michaud C.E., Cossar R.D., Crowe S.H. (1999) Development and cutout curves for ultra-narrow and wide-row cotton in Tennessee. Proceedings of the Beltwide Cotton Conferences 1, 630-632. Hake K.D., Bassett D.M., Kerby T.A., Mayfield W.D. (1996) Producing quality cotton. In 'Cotton Production Manual'. (Eds SJ Hake, TA Kerby and KD Hake) pp. 134-149. (University of California: Oakland) Hake K.D., Kerby T.A. (1996) Cotton and the environment. In 'Cotton Production Manual'. (Eds SJ Hake, TA Kerby and KD Hake) pp. 324-333. (University of California: Oakland) Harland S.C. (1929) Early maturity in cotton. Tropical Agriculture 6, 114-119. Hawkins B., Peacock H. (1973) Influence of row width and population density on yield and fibre characteristics of cotton. Agronomy Journal 65, 47. Hay R.K.M., Walker A.J. (1989) 'An Introduction to the Physiology of Crop Yield.' (Longman Scientific and Technical: New York)

Hayes R.M., Matthews S.G., Brawley P.A., Mueller T.C. (1999) Weed management in no till ultra narrow row cotton. <i>Proceedings, Southern Weed Science Society</i> 52 , 35-36.
Hearn A.B. (1969a) Growth and performance of cotton in a desert environment I. Morphological development of the crop. <i>Journal of Agricultural Science</i> 73, 65-74.
Hearn A.B. (1969b) The growth and performance of cotton in a desert environment II. Dry matter production. <i>Journal of Agricultural Science</i> 73, 75-86.
Hearn A.B. (1972a) Cotton spacing experiments in Uganda. <i>Journal of Agricultural Science</i> 78, 13-25.
Hearn A.B. (1972b) The growth and performance of rain-grown cotton in a tropical upland environment. I. Yields, water relations and crop growth. <i>Journal of Agricultural Science</i> 79, 121-135.
Hearn A.B. (1972c) The growth and performance of rain-grown cotton in a tropical upland environment. II. The relationship between yield and growth. <i>Journal of Agricultural Science</i> 79, 137-145.
Hearn A.B. (1975a) Response of cotton to water and nitrogen in a tropical environment I. Frequency of watering and method of application of nitrogen. <i>Journal of Agricultural Science</i> 84, 407-417.
Hearn A.B. (1975b) Response of cotton to water and nitrogen in a tropical environment. II. Date of last watering and rate of application of nitrogen fertilizer. <i>Journal of Agricultural Science</i> 84, 419-430.
Hearn A.B. (1976) Crop physiology. In 'Agriculture research for development'. (Ed. MH Arnold) pp. 77-122. (Cambridge University Press: London)
Hearn A.B. (1981) Cotton nutrition. Field Crop Abstracts 34, 11-34.
Hearn A.B. (1994) OZCOT: a simulation model for cotton crop management. <i>Agricultural Systems</i> 44, 257-299.
Hearn A.B., Constable G.A. (1984) Cotton. In 'The Physiology of Tropical Field Crops'. (Eds PR Goldsworthy and NM Fisher) pp. 495-527. (John Wiley & Sons Ltd: Chichester)
Hearn A.B., Fitt G.P. (1992) Cotton cropping systems. In 'Field Crop Ecosystems'. (Ed. CJ Pearson) pp. 85-142. (Elsevier: Amsterdam)
Hearn A.B., Hughes N.J. (1975) Narrow row cotton in the Ord Valley, Western Australia. Cotton Growing Review 52, 285-292.
Heitholt J.J. (1994) Canopy characteristics associated the deficient and excessive cotton plant population densities. <i>Crop Science</i> 34 , 1291-1297.
Heitholt J.J. (1995) Cotton flowering and boll retention in different planting configurations and leaf shapes. <i>Agronomy Journal</i> , 994-998.

Heitholt J.J., Pettigrew W., Meredith W. (1992) Light interception and lint yield on narrow-row cotton. Crop Science 32, 728-733. Heitholt J.J., Pettigrew W.T., Meredith Jr W.R. (1993) Growth, boll opening rate, and fiber properties of narrow row cotton. Agronomy Journal 85, 590-594. Heitholt J.J., Stewart J.M. (1999) Cotton genotypes exhibiting cluster-like fruiting morphology and their response to 30-inch rows. Proceedings of the Beltwide Cotton Conferences 1, 640-640. Herbert S.J., Litchfield G.V. (1984) Growth response of short-season soybean to variations in row spacing and density. Field Crops Research 9, 163-171. Hernandez-Jasso A., Gutierrez-Zamoran J. (2000) Response to plant density in cotton cultivars, yield and yield components. Yaqui Valley, Sonora, Mexico. Proceedings of the Beltwide Cotton Conferences 1, 568-570. Hiebsch C.K., Kembolo Salumu U., Gardner F.P., Boote K.J. (1990) Soybean canopy structure, light interception, and yield as influenced by plant height, row spacing, and row orientation. Soil and Crop Society of Florida Proceedings 49, 117-124. Hons F.M., McMichael B.L. (1986) Planting pattern effects on yield, water use and root growth of cotton. Field Crops Research 13, 147-158. Isbell R. (2002) 'The Australian Soil Classification.' (CSIRO Publishing: Canberra) Jackson B.S., Gerik T.J. (1990) Boll shedding and boll load in nitrogen-stressed cotton. Agronomy Journal 82, 483-488. Jenkins J.N., McCarty J.C., Parrott W.L. (1990a) Effectiveness of fruiting sites in cotton: yield. Crop Science 30, 365-369. Jenkins J.N., McCarty J.C., Parrott W.L. (1990b) Fruiting efficiency in cotton: boll size and boll set percentage. Crop Science 30, 857-860. Jones J.W., Wells R. (1997) Dry matter allocation and fruiting patterns of cotton grown at two divergent plant populations. Crop Science 37, 797-802. Jones M.A. (2001) Evaluation of ultra-narrow row cotton in South Carolina. Proceedings of the Beltwide Cotton Conferences 1, 522-524. Jones M.A., Wells R. (1998) Fiber yield and quality of cotton grown at two divergent population densities. Crop Science 38, 1190-1195. Jordan W.R. (1979) Part IV. Influence of edaphic parameters on flowering, fruiting and cutout. A. Role of plant water deficit. Proceedings of the Beltwide Cotton Conferences, 297-301.

Jost P.H. (2000) Comparisons of ultra-narrow row and conventionally-spaced cotton. PhD thesis, Texas A & M University. Jost P.H., Cothren J.T. (1999a) Is ultra-narrow row earlier than conventionally-spaced cotton? Proceedings of the Beltwide Cotton Conferences 1, 640-640. Jost P.H., Cothren J.T. (1999b) Ultra-narrow row and conventionally spaced cotton: growth and yield comparisons. Proceedings of the Beltwide Cotton Conferences 1, 559-559. Jost P.H., Cothren J.T. (2000a) Evaluations of cotton plant density in ultra-narrow and conventional row spacings. Proceedings of the Beltwide Cotton Conferences 1, 659-660. Jost P.H., Cothren J.T. (2000b) Growth and yield comparisons of cotton planted in conventional and ultra-narrow row spacings. Crop Science 40, 430-435. Jost P.H., Cothren J.T. (2001) Phenotypic alterations and crop maturity differences in ultra-narrow row and conventionally spaced cotton. Crop Science 41, 1150-1159. Jost P.H., Cothren T., Gerik T.J. (1998) Growth and yield of ultra-narrow row and conventionally-spaced cotton. Proceedings of the Beltwide Cotton Conferences 2, 1383-1383. Kerby T.A. (1985) Cotton response in mepiquat chloride. Agronomy Journal 77, 515-518. Kerby T.A. (1998) UNR cotton production system trial in the Mid South. Proceedings of the Beltwide Cotton Conferences 1, 87-88. Kerby T.A., Buxton D.R. (1978) Effect of leaf shape and plant population on rate of fruiting position appearance in cotton. Agronomy Journal 70, 535-538. Kerby T.A., Buxton D.R. (1981) Competition between adjacent fruiting forms in cotton. Agronomy Journal 73, 867-871. Kerby T.A., Buxton D.R., Matsuda K. (1980) Carbon source-sink relationships within narrow-row cotton canopies. Crop Science 20, 208-213. Kerby T.A., Cassman K.G., Keeley M. (1990a) Genotype and plant densities for narrowrow cotton systems. II. Leaf area and dry-matter partitioning. Crop Science 30, 649-653. Kerby T.A., Cassman K.G., Keeley M. (1990b) Genotypes and plant densities for narrowrow cotton systems. I. Height, nodes, earliness, and location of yield. Crop Science 30, 644-649. Kerby T.A., Hake K., Keeley M. (1986) Cotton fruiting modification with mepiquat chloride. Agronomy Journal 78, 907-912. Kerby T.A., Hake S.J., Hake K.D., Carter L.M., Garber R.H. (1996a) Seed quality and planting environment. In 'Cotton Production Manual'. (Eds SJ Hake, TA Kerby and KD

Hake) pp. 203-209. (University of California: Oakland)

Kerby T.A., Weir B.L., Keeley M.P. (1996b) Narrow-row production. In 'Cotton Production Manual'. (Eds SJ Hake, TA Kerby and KD Hake) pp. 356-364. (University of California: Oakland)

Koli S.E., Morrill L.G. (1976a) Effects of narrow row, plant population, and nitrogen application on cotton fiber characteristics. *Agronomy Journal* 68, 794-797.

Koli S.E., Morrill L.G. (1976b) Influence of nitrogen, narrow rows, and plant population on cotton yield and growth. *Agronomy Journal* 68, 897-901.

Kostopoulos S., Chlichlias A. (1979) Influence of row spacings and plant population densities on yield, earliness, and fiber properties of two Greek cotton cultivars (*Gossypium hirsutum* L.). Agricultural Research 4, 343-355.

Kreig D.R. (1996) Physiological aspects of ultra narrow row cotton production. *Proceedings of the Beltwide Cotton Conferences* 1, 66-66.

Kreig D.R., Sung F.J.M. (1979) Source-sink relations of cotton as affected by water stress during boll development. *Proceedings of the Beltwide Cotton Conferences*, 302-305.

Landivar J.A. (1987) Apparent photosynthesis as a function of leaf age and growth analysis of cotton genotypes differing in maturities. PhD thesis, Mississippi State University.

Lang A.R.G. (1973) Leaf orientation of a cotton plant. Agricultural Meteorology 11, 37-51.

Leach G.J., Beech D.F. (1988) Response of chickpea accessions to row spacing and plant density on a vertisol on the Darling Downs, south-eastern Queensland.

2. Radiation interception and water use. *Australian Journal of Experimental Agriculture*28, 377-383.

Leach J.E., Stevenson H.J., Rainbow A.J., Mullen L.A. (1999) Effects of high plant populations on the growth and yield of winter oilseed rape (*Brassica napus*). *Journal of Agricultural Science* 132, 173-180.

Leffler H.R. (1979) Physiology of earliness. *Proceedings of the Beltwide Cotton Conferences*, 264-265.

Leigh T., Grimes D., Dickens W., Jackson C. (1974) Planting pattern, plant population, irrigation, and insect interactions in cotton. *Environmental Entomology* 3, 492-496.

Lewis H. (2001) Plant population levels and earliness in American upland cotton. *Proceedings of the Beltwide Cotton Conferences* 1, 461-464.

Lewis H.L. (1971) What is narrow row high population cotton? *The Cotton Ginners Journal and Yearbook* March, 49.

Longstreth D.J., Nobel P.S. (1980) Nutrient influence on leaf photosynthesis. Effects of nitrogen, phosphorus and potassium for <i>Gossypium hirsutum</i> L. <i>Plant Physiology</i> 65 , 541-543.
Loomis R.S., Connor D.J. (1992) 'Crop Ecology: Productivity and Management in Agricultural Systems.' (Cambridge University Press: Cambridge)
Low A., Hesketh J.D., Muramoto H. (1969) Some environmental effects on the varietal node number of the first fruiting branch. <i>Cotton Growing Review</i> 46, 181-188.
Low A., McMahon J.P. (1973) Development of narrow row, high density cotton in Australia. <i>Cotton Growing Review</i> 50 , 130-149.
Makki Y.M., Briggs R.E. (1979) Effect of plant population and apex removal on leaf area index, net assimilation rate and crop growth rate of narrow-row cotton (Gossypium hirsutum L.). Journal of the College of Agriculture, University of Riyadh 1, 79-95.
Marois J.J., Wright D.W., Wiatrak P.J., Vargas M.A. (2004) Effect of row width and nitrogen on cotton morphology and canopy microclimate. <i>Crop Science</i> 44, 870-877.
Mason T.G. (1922) Growth and abscission in Sea Island cotton. <i>Annals of Botany</i> 36, 457-484.
Mauney J.R. (1966) Floral initiation of upland cotton (Gossypium hirsutum L.) in response to temperatures. Journal of Experimental Botany 17, 452-459.
Mauney J.R. (1986) Vegetative growth and development of fruiting sites. In 'Cotton Physiology, No. 1'. (Eds JR Mauney and JM Stewart) pp. 11-28. (The Cotton Foundation: Memphis)
Mauney J.R., Fry K.E., Guinn G. (1978) Relationship of photosynthetic rate to growth and fruiting of cotton, soybean, sorghum and sunflower. <i>Crop Science</i> 18, 259-263.
Mayfield W. (1999) Overview of UNRC situation from a ginner's perspective. Proceedings of the Beltwide Cotton Conferences 1, 414-416.
McConnell J.S., Baker W.H., Miller D.M., Frizzell B.S., Varvil J.J. (1993) Nitrogen fertilization of cotton cultivars of differing maturity. <i>Agronomy Journal</i> 85, 1151-1156.
McConnell J.S., Kirst J., R.C., Glover R.E., Benson R. (2001) Nitrogen fertilization of ultra-narrow-row cotton. In 'Proceedings of the 2001 Cotton Research Meeting'. (Ed. DM Oosterhuis)
McFarland M.L., Lemon R.G., Mazac F.J., Pigg D.J., Abrameit A. (2002) Nitrogen requirements in UNR cotton systems. <i>Proceedings of the Beltwide Cotton Conferences</i> , CDROM.
McMichael B.L. (1979) The influence of plant water stress on flowering and fruiting in cotton. <i>Proceedings of the Beltwide Cotton Conferences</i> , 301-302.

McMichael B.L., Jordan W.R., Powell R.D. (1973) Abscission processes in cotton: induction by plant water deficit. *Agronomy Journal* 65, 202-204.

Milroy S.P., Bange M.P. (2003) Nitrogen and light responses of cotton photosynthesis and implications for crop growth. *Crop Science* 43, 904-913.

Milroy S.P., Bange M.P., Hearn A.B. (2004) Row configuration in rainfed cotton systems: modification of the OZCOT simulation model. *Agricultural Systems* 82, 1-16.

Mohamad K., Sappenfield W., Poehlman J. (1982) Cotton cultivar response to plant populations in a short-season, narrow-row cultural system. *Agronomy Journal* 74, 619-625.

Monteith J.L. (1977) Climate and the efficiency of crop production. *Britain Philosophical Transactions of the Royal Society of London Series B* **218**, 277-297.

Muchow R.C. (1988) Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment. I. Leaf growth and leaf nitrogen. *Field Crops Research* 18, 1-16.

Munro J.M. (1971) An analysis of earliness in cotton. Cotton Growing Review 48, 28-41.

Mutsaers H.J.W. (1976) Growth and assimilate conversion of cotton bolls (Gossypium hirsutum L.) 1. Growth of fruits and substrate demand. Annals of Botany 40, 301-315.

Nichols S.P., Snipes C.E. (2002) Evaluation of varieties and plant population in ultra narrow row Cotton in Mississippi. *Proceedings of the Beltwide Cotton Conferences*, CDROM.

Nichols S.P., Snipes C.E., Jones M.A. (2003) Evaluation of row spacing and mepiquat chloride on cotton. *Journal of Cotton Science* 7, 148-155.

Nichols S.P., Snipes C.E., Jones M.A. (2004) Cotton growth, lint yield and fiber quality as affected by row spacing and cultivar. *Journal of Cotton Science* 8, 1-12.

Niles G. (1970) Development of plant types with special adaption to narrow row culture. Proceedings of the Beltwide Cotton Production Research Conferences, 63-64.

Niles G.A. (1972) Breeding varieties for narrow-row poses a challenge. *Cotton International* 39, 64-65.

Niles G.A., Feaster C.V. (1984) Breeding. In 'Cotton'. (Eds RJ Kohel and CF Lewis) pp. 201-231. (American Society of Agronomy: Madison, WI.)

Noffsinger S.L., van Santen E. (1995) Yield and yield components of spring-sown white lupin in the Southeastern USA. *Agronomy journal* 87, 493-497.

Nunez R., Kamprath E. (1969) Relationships between N response, plant population and row width on growth and yield of corn. *Agronomy Journal* 61, 279-282.

Onken A.B., Sunderman H.D. (1973) Varietal response of narrow-row cotton to management of water and fertilizer on the Texas High Plains. Western Cotton Production Conference: summary proceedings 1973, 14-16.

Oosterhuis D.M. (1990) Growth and development of the cotton plant. In 'Nitrogen Nutrition in Cotton: Practical Issues Proceedings Southern Branch Workshop for Practicing Agronomists'. (Eds WN Miley and DM Oosterhuis) pp. 1-24. (American Society of Agronomy: Madison, WI)

Oosterhuis D.M., Jernstedt J. (1999) Morphology and anatomy of the cotton plant. In 'Cotton: Origin, History, Technology, and Production'. (Eds WC Smith and JT Cothren) pp. 175-206. (John Wiley & Sons, Inc: New York)

Oosterhuis D.M., Urwiler M.J. (1988) Cotton main-stem leaves in relation to vegetative development and yield. *Agronomy Journal* 80, 65-67.

Oosterhuis D.M., Wullschleger S.D. (1988) Cotton leaf area distribution in relation to yield development. *Proceedings of the Beltwide Cotton Conferences*, 82-84.

Ozer H. (2003) The effect of plant population densities on growth, yield and yield components of two spring rapeseed cultivars. *Plant, Soil and Environment Journal* 49, 422-426.

Parish R.L., Brister S.M., Mermoud D.E. (1973) Wide-bed, narrow-row cotton: preliminary research results. *Arkansas Farm Research* 22, 4.

Parish R.L., Waddle B.A. (1972) A wide-bed cultural system for growing narrow-row cotton. *Arkansas Farm Research* 21, 7.

Peng S., Krieg D.R. (1991) Single leaf canopy photosynthesis response to plant age in cotton. *Agronomy Journal* 83, 704-708.

Peng S.Q. (1984) Preliminary findings on fruit set in relation to rainfall. *China Cotton* 5, 22-27.

Pettigrew W.T. (1994) Source-to-sink manipulation effects on cotton lint yield and yield components. *Agronomy Journal* 86, 731-735.

Prince W.B., Landivar J.A., Livingston C.W. (1998) Growth, lint yield and fiber quality as affected by 15 and 30-inch row spacing and Pix rates. *Proceedings of the Beltwide Cotton Conferences* 2, 1481-1481.

Prince W.B., Livingston C.W., Landivar J.A. (1999) Effects of population, variety, and row spacing on cotton growth, lint yield and fiber quality in the Coastal Plains of South Texas. *Proceedings of the Beltwide Cotton Conferences* 1, 615-615.

Pustejovsky D. (1979) Future of cotton in Texas depends on narrow rows. *Cotton International* **46**, 58-60.

Putman D.H., Wright J., Field L.A., Ayisi K.K. (1992) Seed yield and water-use efficiency of white lupin as influenced by irrigation, row spacing, and weeds. Agronomy Journal 84, 557-563. Radin J.W., Eidenbock M.P. (1986) Carbon accumulation during photosynthesis in leaves of nitrogen- and phosphorus-stressed cotton. Plant Physiology 82, 869-871. Radin J.W., Parker L.L. (1979) Water relations of cotton plants under N deficiency. I. Dependence of leaf structure. Plant Physiology 64, 495-498. Ramey J.H. (1999) Classing of fiber. In 'Cotton: Origin, History, Technology and Production'. (Eds WC Smith and JT Cothren) pp. 709-728. (John Wiley and Sons: New York) Rao M.J., Weaver J.J.B. (1976) Effect of leaf shape on response of cotton to plant population, N rate and irrigation. Agronomy Journal 68, 599-601. Ray L.L., Richmond T.R. (1966) Morphological measures of earliness of crop maturity in cotton. Crop Science 6. Richmond T.R., Radwan S.R.H. (1962) A comparative study of seven methods of measuring earliness of crop maturity in cotton. Crop Science 2, 397-400. Rinehardt J.M., Edmisten K.L., Wells R., Faircloth J.C. (2004) Response of ultra-narrow and conventional spaced cotton to variable nitrogen rates. Journal of Plant Nutrition 27, 743-755. Rochester I.J., Peoples M.B., Constable G.A. (2001) Estimation of the N fertiliser requirement of cotton grown after legume crops. Field Crops Research 70, 43-53. Rosenthal W.D., Gerik T.J. (1991) Radiation use efficiency among cotton cultivars. Agronomy Journal 83, 655-658. Sadras V.O., Milroy S.P. (1996) Soil-water thresholds for the responses of leaf expansion and gas exchange: a review. Field Crops Research 47, 253-266. Sadras V.O., Wilson L.J. (1997) Growth analysis of cotton crops infested with spider mites: I. Light interception and radiation-use efficiency. Crop Science 37, 481-491. Saleem M.B., Buxton D.R. (1976) Carbohydrate status of narrow row cotton as related to vegetative and fruit development. Crop Science 16, 523-526. Savoy B.R., Cothren J.T., Shumway C.R. (1992) Soybean biomass accumulation and leaf area index in early-season production environments. Agronomy Journal 84, 956-959. Shibles R.M., Weber C.R. (1966) Interception of solar radiation and dry matter production by various planting patterns. Crop Science 6, 55-59.

SILO (2006a) SILO day-degree calculator. http://www.cotton.crc.org.aw/Tools/Agronomy/SILODayDegCalc.htm Accessed 01/03/2006, Html. SILO
SILO (2006b) SILO patched point dataset. http://www.nrw.qld.gov.au/silo/ppd/ Accessed 01/03/2006, Html. SILO
Silvertooth J.C., Edmisten K.L., McCarty W.H. (1999) Production practices. In 'Cotton: Origin, History, Technology and Production'. (Eds WC Smith and JT Cothren) pp. 451-488. (John Wiley and Sons Inc.: New York)
Sinclair T.R., Horie H. (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. <i>Crop Science</i> 29 , 90-98.
Sinclair T.R., Muchow R.C. (1999) Radiation use efficiency. In 'Advances in Agronomy, Vol 65' pp. 215-265)
Sinclair T.R., Vadez V. (2002) Physiological traits for crop yield improvement in low N and P environments. <i>Plant and Soil</i> 245 , 1-15.
Smith J.E., Longstreth D.J. (1994) Leaf expansion and carbon assimilation in cotton leaves grown at two photosynthetic photon flux densities. <i>American Journal of Botany</i> 81, 711-717.
Smith W., Waddle B., Ramey J.H. (1979) Plant spacing with irrigated cotton. <i>Agronomy Journal</i> 71, 858-860.
Snipes C.E. (1996) Weed control in ultra narrow row cotton possible strategies assuming a worst case scenario. <i>Proceedings of the Beltwide Cotton Conferences</i> 1, 66-67.
Steglich E.M., Gerik T.J., Kiniry J., Cothren J.T., Lemon R.G. (2000) Change in cotton light extinction coefficient with row spacing in upland cotton. <i>Proceedings of the Beltwide Cotton Conferences</i> 1, 606-608.
Stiller W.N., Reid P.E., Constable G.A. (2004) Maturity and leaf shape as traits influencing cotton cultivar adaptation to dryland conditions. <i>Agronomy Journal</i> 96, 656-664.
Taylor B.B. (1971) Narrow row cotton gives better quality at lower cost. <i>Crops Soils</i> 24, 7-9.
Taylor H. (1980) Soybean growth and yield as affected by row spacing and by seasonal water supply. <i>Agronomy Journal</i> 72, 543-547.
Taylor H.M., Mason W.K., Bennie A.T.P., Rowse H.R. (1982) Responses of soybeans to two row spacings and two soil water levels. I. An analysis of biomass accumulation, canopy development, solar radiation interception and components of seed yield. <i>Field Crops Research</i> 5, 1-14.

Teasdale J.R. (1994) Influence of narrow row/high population corn (Zea mays) on weed control and light transmittance. Weed Technology 9, 113-118. Thornley J.H.M. (1976) 'Mathematical Models in Plant Physiology.' (Academic Press: London) Turner N.C., Hearn A.B., Begg J.E., Constable G.A. (1986) Cotton (Gossypium hirsutum L.): physiological and morphological responses to water deficits and their relationship to yield. Field Crops Research 14, 153-170. Vories E.D., Valco T.D., Bryant K.J., Glover R.E. (2001) Three-year comparison of conventional and ultra narrow row cotton production systems. Applied Engineering in Agriculture 17, 583-589. Walker J.K., Niles G.A., Gannaway J.R., Bradshaw R.D., Glodt R.E. (1976) Narrow row planting of cotton genotypes and boll weevil damage (Anthonomus grandis). Journal of Economic Entomology 69, 249-253. Wall G.W., Amthor J.S., Kimball B.A. (1994) COTCO₂: a cotton growth simulation model for global change. Agricultural and Forestry Meteorology 70, 289-342. Wanjura D.F., Baker R.V. (1975) Ginning of narrow-row cotton. U.S. Dept. of Agriculture. Production research report 160. Weaver-Missick T., Becker H., Comis D., Suszkiw J., Wood M. (2000) Ultra narrow row cotton. Agricultural Research Jan, 20-22. Weir B.L. (1996) Narrow row cotton distribution and rationale. Proceedings of the Beltwide Cotton Conferences 1, 65-66. Weir B.L., Kerby T.A., Hake K.D., Roberts B.A., Zelinski L.J. (1996) Cotton fertility. In 'Cotton Production Manual'. (Eds SJ Hake, TA Kerby and KD Hake) pp. 210-227. (University of California: Oakland) Wells R., Meredith Jr W. (1984) Comparative growth of obsolete and modern cotton cultivars: I. Vegetative dry matter partitioning. Crop Science 24, 858-862. Whiteley E.L., Reyes L., Longenecker D.L. (1976a) Short-season, narrow-row cotton studies in the Coastal Bend and Brazos River Valley. Progress Report Texas Agricultural Experiment Station 22, 72-73. Whiteley E.L., Simpson B.J., Whitehurst S.H. (1976b) Short-season narrow-row cotton studies in the Northern Blacklands. Texas Agricultural Experiment Station Progress *Report*, 1-15. Widdicombe W.D., Thelen K.D. (2002) Row width and plant density effects on corn grain production in the Northern corn belt. Agronomy Journal 94, 1020-1023. Wiese A.F., Smith D.T. (1971) Herbicides in narrow-row cotton culture. Crop Science 11,

518-520.

Willey R., Heath S. (1969) The quantitative relationship between plant population and crop yield. *Advances in Agronomy* 21, 281-321.

Williford J.R. (1992) Production of cotton on narrow row spacing. *Transactions of the ASAE* July/August, 1109-1112.

Witten T.K., Cothren J.T. (2000) Varietal comparisons in ultra narrow row cotton (UNRC). Proceedings of the Beltwide Cotton Conferences 1, 608-608.

Wright D.L., Marois J.J., Wiatrak P.J., Sprenkel R.K., Rich J.R., Brecke B., Katsvairo T.W. (2004) Production of ultra narrow row cotton. http://edis.ifas.ufl.edu Accessed 23rd August, Article. University of Florida, IFAS Extension

Wullschleger S.D., Oosterhuis D.M. (1990a) Canopy development and photosynthesis of cotton as influenced by nitrogen nutrition. *Journal of Plant Nutrition* 13, 1141-1154.

Wullschleger S.D., Oosterhuis D.M. (1990b) Photosynthetic carbon production and use by developing cotton leaves and bolls. *Crop Science* 30, 1259-1264.

Wullschleger S.D., Oosterhuis D.M. (1992) Canopy leaf area development and age-class dynamics in cotton. *Crop science* 32, 451-456.

Yoda K., Kira T., Ogawa H., Hozumi K. (1963) Self-thinning in overcrowded pure stands under cultivated and natural conditions (intraspecific competition among higher plants XI). *Journal of Biology, Osaka City University* 14, 107-129.

Young E.F., Taylor R.M., Petersen H.D. (1980) Day-degree units and time in relation to vegetative development and fruiting for three cultivars of cotton. *Crop Science* **20**, 370-374.

Zhao D., Oosterhuis D. (1998a) Evaluation of plant growth regulators for effect on the growth and yield of cotton. *Proceedings of the Beltwide Cotton Conferences* 2, 1482-1484.

Zhao D., Oosterhuis D. (1998b) Responses of field-grown cotton to shade: an overview. *Proceedings of the Beltwide Cotton Conferences* 2, 1503-1507.

Zhao D., Oosterhuis D. (2000) Cotton responses to shade at different growth stages: growth, lint yield and fibre quality. *Experimental Agriculture* **36**, 27-39.

Zhao D.L., Oosterhuis D.M. (1998c) Influence of shade on mineral nutrient status of field-grown cotton. *Journal of Plant Nutrition* 21, 1681-1695.

Zhu B., Oosterhuis D.M. (1992) Nitrogen distribution within a sympodial branch of cotton. *Journal of Plant Nutrition* 15, 1-14.

Appendices

Appendix 1 - History of crop management for each experiment

Table 1. Crop management for Exp. 1: 2001-2002 Narrabri growth analysis

Fertiliser History		Amount	Date
Anhydrous Ammonium	A	100 kg N ha ⁻¹	18/07/2001
Herbicide Application			
Diuron		2.5 L ha ⁻¹	23/07/2001
Treflan		480 g L ⁻¹ @ 2.3 L ha ⁻¹	23/07/2001
Irrigation Management			
Irrigation Dates			19/12/2001
			5/01/2002
			22/01/2002
			8/02/2002
			22/02/2002
			14/03/2002
Pest Management			
Tracer	The Tab	0.7 L ha ⁻¹	12/01/2002
Affirm		0.55 L ha ⁻¹	19/01/2002
Steward		0.8 L ha ⁻¹	26/01/2002
North Service Nation		0.85 L ha ⁻¹	01/03/2002
Talstar 100 RC		0.8 L ha ⁻¹	06/02/2002
P.B.O.		0.4 L ha ⁻¹	06/02/2002
Rogor		0.85 L ha ⁻¹	01/03/2002

Table 2. Crop management for Exp. 2: 2002-2003 Narrabri growth analysis

Fertiliser History	Amount	Date		
Anhydrous Ammonium	120 kg N ha ⁻¹	27/08/2002		
- neg (1840 o) 5 1 1 1 1 1	<u> </u>			
Herbicide application				
Diuron	1.0 L ha ⁻¹	19/09/2002		
Stomp	3.0 L ha ⁻¹	19/09/2002		
Irrigation Management				
Irrigation Dates		24/9/2002		
<i>B</i>		30/10/2002		
		13/12/2002		
		1/01/2003		
		17/1/2003		
		30/1/2003		
		14/2/2003		
Pest Management				
Regent	1.0 L ha ⁻¹	12/01/2003		

Table 3. Crop management for Exp. 3: 2002-2003 Hillston growth analysis

Fertiliser History	Amount	Date
Anhydrous Ammonium	135 kg N ha ⁻¹	11/06/2002
MAP + 1% Zinc	150 kg ha ⁻¹	9/08/2002
Zinksul (ground app)	2.0 L ha ⁻¹	4/11/2002
Irrigation Management		
Irrigation Dates		6/10/2002

	(4)	4/12/2002	
		22/12/2002	
		10/01/2003	
		24/01/2003	
		7/02/2003	
		4/03/2003	_
Pest Management			
Endosulfan	2.1 L ha ⁻¹	4/11/2002	
Regent	0.063 L ha ⁻¹	12/12/2002	
Amino Feed	1.0 L ha ⁻¹	23/12/2002	
Timmo T 000		01/01/2003	
		06/01/2003	
		11/01/2003	
Co Star OF	0.9 L ha ⁻¹	23/12/2002	
Co Star O1		01/01/2003	
		18/01/2003	
Tracer	0.2 L ha ⁻¹	01/01/2003	
MVPII	1.5 L ha ⁻¹	06/01/2003	
Agrimec	0.6 L ha ⁻¹	06/01/2003	
Pegasus	0.6 L ha ⁻¹	11/01/2003	
Gemstar	0.5 L ha ⁻¹	11/01/2003	
Tracer II	0.8 L ha ⁻¹	18/01/2003	
Intrepid 360 SC	0.55 L ha ⁻¹	31/01/2003	

Table 4. Crop management for Exp. 4: 2002-2003 Breeza row configuration

experiment	Amount	Date
Fertiliser History		
Urea	Amount 110 kg N ha ⁻¹	21/09/2002
Irrigation Management		
Irrigation Dates		19/01/2003
Pest Management		
Nil		35

Table 5. Crop management for I	growth analysis	
Fertiliser History	Amount	Date
Anhydrous Ammonium	120 kg N ha ⁻¹	19/08/2003
Herbicide Application		
Treflan	2.2 L ha ⁻¹	10/09/2003
Cotoran	4 L ha ⁻¹	03/11/2003
Irrigation Management		
Irrigation Dates		04/11/2003
g		16/12/2003
		31/12/2003
		09/02/2004
		05/03/2004
Pest Management		
Prodigy	2.5 L ha ⁻¹	13/12/2003
Affirm	0.7 L ha ⁻¹	10/01/2004
Regent	0.063 L ha ⁻¹	10/01/2004
Steward	0.85 L ha ⁻¹	28/01/2004
P.B.O	0.4 L ha ⁻¹	05/03/2004
Talstar 100 EC	0.8 L ha ⁻¹	05/03/2004

Fertiliser His			03-2004 Hillston g	Date	
Anhydrous an		 	132 kg N ha ⁻¹	22/08/2003	
MAP & 1% z			1601 1 1	22/09/2003	
Water run ure			50 kg N ha ⁻¹	22/09/2003	_
Herbicide Ap					
Roundup Max		- 2.5	1.2 L ha ⁻¹	03/09/2003	
Goal			0.07 L ha ⁻¹	03/09/2003	
Stomp			4.5 L ha ⁻¹	30/09/2003	
Cotogard			1.7 L ha ⁻¹	30/09/2003	
Roundup read	ly		1.5 L ha ⁻¹	04/11/2003	
Roundup read			1.0 L ha ⁻¹	14/11/2003	
Irrigation Ma	nagement	357.62			112
Irrigation Dat	es			16/10/2003	
•				02/12/2003	
				15/12/2003	
				29/12/2003	
				12/01/2004	
				23/01/2004	
				05/02/2004	
				14/02/2004	
				26/02/2004	
	1 1		- 4 - 11	10/03/2004	
Pest Manage	ment				_
Dimethoate			0.200 L ha ⁻¹	13/11/2003	
Agrimec			0.600 L ha ⁻¹	13/12/2003	
Regent			0.06 L ha ⁻¹	13/12/2003	
Tracer II			0.400 L ha ⁻¹	18/12/2003	
			0.400 L ha ⁻¹	24/01/2004	
Endosulfan			2.1 L ha ⁻¹	7/01/2004	
Ovasyn			2.0 L ha ⁻¹	23/12/2003	
•			2.0 L ha ⁻¹	7/01/2004	
Predator			5.0 L ha ⁻¹	21/02/2004	

Appendix 2 – Example GLM analysis

Response variate:

Lint m²

Fixed model:

Constant + Exp + Treatment + Exp.Treatment

Random model:

Rep + Exp.Rep

Number of units:

44

Residual term has been added to model

Sparse algorithm with AI optimisation

Estimated variance components

Random term

component

s.e.

Rep

6.

100.

Exp.Rep

0.

bound

Residual variance model

Term Residual Factor

Model(order) Identity Parameter Sigma2 Estimate 1261.

s.e. 330.

Wald tests for fixed effects

Sequentially adding terms to fixed model

Fixed term

Exp Treatment Exp.Treatment 79.08 5 11.29 1 7.12 5 15.82 11.29 1.42

Wald/d.f.

<0.001 <0.001 0.212

chi pr

Dropping individual terms from full fixed model

Fixed term Exp.Treatment

Wald statistic 7.12

Wald statistic

d.f. 5

d.f.

Wald/d.f. 1.42 chi pr 0.212

Appendix 3 – Specific leaf area for Exps. 1, 2 and 5

In Exp. 1 SLA in the UNR treatments was significantly higher than the conventionally spaced treatments at 35 DAS (P = 0.003) and significantly higher at 59 DAS (Figure 1). The only significant difference in SLA in Exp. 2 was significantly lower in the UNR treatments compared to the conventionally spaced treatments at 55 DAS (P = 0.024) (Figure 1). In Exp. 5 in SLA was significantly lower in the UNR treatments compared to the conventionally spaced treatments at 54 and 60 DAS (P = 0.018; P = 0.001 respectively) (Figure 1).

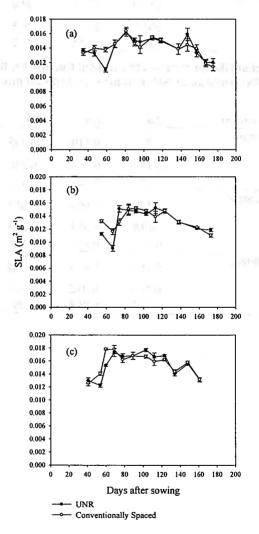


Figure 1. Mean specific leaf area for UNR and conventionally spaced treatments in Exps. 1 (a), 2 (b) and 5 (c). Error bars are two standard errors of the mean.

Appendix 4 – Nutrient uptake of macro- and micro-nutrients for Exps. 1, 2 and 5

Table 1. Mean nutrient uptake for macro-nutrients (N, K, P, S, Ca and Mg (kg ha⁻¹)) in Exps. 1, 2 and 5 for conventionally spaced and UNR treatments (Significant differences indicated by * - 95% confidence level).

Exp.	/ Treatment	N	K	P	S	Ca	Mg
210	Conventionally Spaced	278.0	355.0	58.2	67.6	229.0	53.8
1	UNR	149.0	240.0	37.8	44.3	146.0	36.4
	LSD	137.9	*104.7	*17.8	*15.4	*66.1	26.2
	Conventionally Spaced	168.0	209.0	33.2	34.2	106.6	37.7
2	UNR	175.0	206.0	36.0	28.9	82.4	36.2
	LSD	239.1	303.4	45.6	24.1	79.1	42.5
5	Conventionally Spaced	254.0	229.0	34.6	49.5	199.0	52.0
	UNR	263.0	248.0	39.5	50.8	199.0	51.3
	LSD	210.5	152.5	23.2	29.2	115.8	35.6

Table 2. Mean nutrient uptake for micro-nutrients (Zn, Cu, Mn, Fe, B and Na (kg ha⁻¹)) in Exps. 1, 2 and 5 for conventionally spaced and UNR treatments (Significant differences indicated by ** - 99% confidence level).

Exp.	Treatment	Zn	Cu	Mn	Fe	В	Na
1	Conventionally	0.246	0.110	0.395	0.931	0.571	11.20
	Spaced UNR LSD	0.155 0.108	0.063 **0.021	0.258 0.153	0.507 0.439	0.391 *0.173	11.20 9.53
2	Conventionally Spaced	0.149	0.068	0.264	2.500	0.311	10.50
	UNR	0.18	0.083	2.83	3.700	0.255	10.50
	LSD	0.173	0.105_	0.025	10.330	0.229	17.04
5	Conventionally Spaced	0.160	0.073	0.388	1.670	0.467	13.20
	UNR	0.169	0.072	0.383	1.015	0.489	12.80
	LSD	0.115	0.068	0.291	**0.253	0.272	11.38